Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):2070–2080. doi: 10.1016/S0006-3495(00)76754-3

Molecular basis for the polymerization of octopus lens S-crystallin.

H C Chang 1, T L Lin 1, G G Chang 1
PMCID: PMC1300799  PMID: 10733985

Abstract

S-Crystallin from octopus lens has a tertiary structure similar to sigma-class glutathione transferase (GST). However, after isolation from the lenses, S-crystallin was found to aggregate more easily than sigma-GST. In vitro experiments showed that the lens S-crystallin can be polymerized and finally denatured at increasing concentration of urea or guanidinium chloride (GdmCl). In the intermediate concentrations of urea or GdmCl, the polymerized form of S-crystallin is aggregated, as manifested by the increase in light scattering and precipitation of the protein. There is a delay time for the initiation of polymerization. Both the delay time and rate of polymerization depend on the protein concentration. The native protein showed a maximum fluorescence emission spectrum at 341 nm. The GdmCl-denatured protein exhibited two fluorescence maxima at 310 nm and 358 nm, respectively, whereas the urea-denatured protein showed a fluorescence peak at 358 nm with a small peak at 310 nm. The fluorescence intensity was quenched. Monomers, dimers, trimers, and polymers of the native protein were observed by negative-stain electron microscopic analysis. The aggregated form, however, showed irregular structure. The aggregate was solubilized in high concentrations of urea or GdmCl. The redissolved denatured protein showed an identical fluorescence spectrum to the protein solution that was directly denatured with high concentrations of urea or GdmCl. The denatured protein was readily refolded to its native state by diluting with buffer solution. The fluorescence spectrum of the renatured protein solution was similar to that of the native form. The phase diagrams for the S-crystallin in urea and GdmCl were constructed. Both salt concentration and pH value of the solution affect the polymerization rate, suggesting the participation of ionic interactions in the polymerization. Comparison of the molecular models of the S-crystallin and sigma-GST suggests that an extra ion-pair between Asp-101 and Arg-14 in S-crystallin contributes to stabilizing the protomer. Furthermore, the molecular surface of S-crystallin has a protruding Lys-208 on one side and a complementary patch of aspartate residues (Asp-90, Asp-94, Asp-101, Asp-102, Asp-179, and Asp-180) on the other side. We propose a molecular model for the S-crystallin polymer in vivo, which involves side-by-side associations of Lys-208 from one protomer and the aspartate patch from another protomer that allows the formation of a polymeric structure spontaneously into a liquid crystal structure in the lens.

Full Text

The Full Text of this article is available as a PDF (835.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajaz M. S., Ma Z., Smith D. L., Smith J. B. Size of human lens beta-crystallin aggregates are distinguished by N-terminal truncation of betaB1. J Biol Chem. 1997 Apr 25;272(17):11250–11255. doi: 10.1074/jbc.272.17.11250. [DOI] [PubMed] [Google Scholar]
  2. Bax B., Lapatto R., Nalini V., Driessen H., Lindley P. F., Mahadevan D., Blundell T. L., Slingsby C. X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins. Nature. 1990 Oct 25;347(6295):776–780. doi: 10.1038/347776a0. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. J., Choe S., Eisenberg D. Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3127–3131. doi: 10.1073/pnas.91.8.3127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. J., Schlunegger M. P., Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995 Dec;4(12):2455–2468. doi: 10.1002/pro.5560041202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broide M. L., Berland C. R., Pande J., Ogun O. O., Benedek G. B. Binary-liquid phase separation of lens protein solutions. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5660–5664. doi: 10.1073/pnas.88.13.5660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caccuri A. M., Antonini G., Ascenzi P., Nicotra M., Nuccetelli M., Mazzetti A. P., Federici G., Lo Bello M., Ricci G. Temperature adaptation of glutathione S-transferase P1-1. A case for homotropic regulation of substrate binding. J Biol Chem. 1999 Jul 2;274(27):19276–19280. doi: 10.1074/jbc.274.27.19276. [DOI] [PubMed] [Google Scholar]
  7. Chiou S. H., Yu C. W., Lin C. W., Pan F. M., Lu S. F., Lee H. J., Chang G. G. Octopus S-crystallins with endogenous glutathione S-transferase (GST) activity: sequence comparison and evolutionary relationships with authentic GST enzymes. Biochem J. 1995 Aug 1;309(Pt 3):793–800. doi: 10.1042/bj3090793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chuang C. C., Wu S. H., Chiou S. H., Chang G. G. Homology modeling of cephalopod lens S-crystallin: a natural mutant of sigma-class glutathione transferase with diminished endogenous activity. Biophys J. 1999 Feb;76(2):679–690. doi: 10.1016/S0006-3495(99)77235-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Delaye M., Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. 1983 Mar 31-Apr 6Nature. 302(5907):415–417. doi: 10.1038/302415a0. [DOI] [PubMed] [Google Scholar]
  10. Dill K. A. Polymer principles and protein folding. Protein Sci. 1999 Jun;8(6):1166–1180. doi: 10.1110/ps.8.6.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doolittle R. F. Lens proteins. More molecular opportunism. Nature. 1988 Nov 3;336(6194):18–18. doi: 10.1038/336018a0. [DOI] [PubMed] [Google Scholar]
  12. Haley D. A., Horwitz J., Stewart P. L. The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J Mol Biol. 1998 Mar 20;277(1):27–35. doi: 10.1006/jmbi.1997.1611. [DOI] [PubMed] [Google Scholar]
  13. Jaenicke R. Protein folding and association: in vitro studies for self-organization and targeting in the cell. Curr Top Cell Regul. 1996;34:209–314. doi: 10.1016/s0070-2137(96)80008-2. [DOI] [PubMed] [Google Scholar]
  14. Ji X., von Rosenvinge E. C., Johnson W. W., Tomarev S. I., Piatigorsky J., Armstrong R. N., Gilliland G. L. Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods. Biochemistry. 1995 Apr 25;34(16):5317–5328. doi: 10.1021/bi00016a003. [DOI] [PubMed] [Google Scholar]
  15. Kuwajima K. The molten globule state of alpha-lactalbumin. FASEB J. 1996 Jan;10(1):102–109. doi: 10.1096/fasebj.10.1.8566530. [DOI] [PubMed] [Google Scholar]
  16. Liang J. J., Chakrabarti B. Intermolecular interaction of lens crystallins: from rotationally mobile to immobile states at high protein concentrations. Biochem Biophys Res Commun. 1998 May 19;246(2):441–445. doi: 10.1006/bbrc.1998.8640. [DOI] [PubMed] [Google Scholar]
  17. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  18. Raman B., Rao C. M. Chaperone-like activity and temperature-induced structural changes of alpha-crystallin. J Biol Chem. 1997 Sep 19;272(38):23559–23564. doi: 10.1074/jbc.272.38.23559. [DOI] [PubMed] [Google Scholar]
  19. Saint-Jean A. P., Phillips K. R., Creighton D. J., Stone M. J. Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping. Biochemistry. 1998 Jul 21;37(29):10345–10353. doi: 10.1021/bi980868q. [DOI] [PubMed] [Google Scholar]
  20. Siezen R. J., Shaw D. C. Physicochemical characterization of lens proteins of the squid Nototodarus gouldi and comparison with vertebrate crystallins. Biochim Biophys Acta. 1982 Jun 4;704(2):304–320. doi: 10.1016/0167-4838(82)90160-1. [DOI] [PubMed] [Google Scholar]
  21. Simpson A., Moss D., Slingsby C. The avian eye lens protein delta-crystallin shows a novel packing arrangement of tetramers in a supramolecular helix. Structure. 1995 Apr 15;3(4):403–412. doi: 10.1016/s0969-2126(01)00171-x. [DOI] [PubMed] [Google Scholar]
  22. Tang S. S., Chang G. G. Kinetic characterization of the endogenous glutathione transferase activity of octopus lens S-crystallin. J Biochem. 1996 Jun;119(6):1182–1188. doi: 10.1093/oxfordjournals.jbchem.a021366. [DOI] [PubMed] [Google Scholar]
  23. Tang S. S., Chang G. G. Steady-state kinetics and chemical mechanism of octopus hepatopancreatic glutathione transferase. Biochem J. 1995 Jul 1;309(Pt 1):347–353. doi: 10.1042/bj3090347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tang S. S., Lin C. C., Chang G. G. Isolation and characterization of octopus hepatopancreatic glutathione S-transferase. Comparison of digestive gland enzyme with lens S-crystallin. J Protein Chem. 1994 Oct;13(7):609–618. doi: 10.1007/BF01890459. [DOI] [PubMed] [Google Scholar]
  25. Tomarev S. I., Piatigorsky J. Lens crystallins of invertebrates--diversity and recruitment from detoxification enzymes and novel proteins. Eur J Biochem. 1996 Feb 1;235(3):449–465. doi: 10.1111/j.1432-1033.1996.00449.x. [DOI] [PubMed] [Google Scholar]
  26. Tomarev S. I., Zinovieva R. D., Piatigorsky J. Crystallins of the octopus lens. Recruitment from detoxification enzymes. J Biol Chem. 1991 Dec 15;266(35):24226–24231. [PubMed] [Google Scholar]
  27. Tomarev S. I., Zinovieva R. D. Squid major lens polypeptides are homologous to glutathione S-transferases subunits. Nature. 1988 Nov 3;336(6194):86–88. doi: 10.1038/336086a0. [DOI] [PubMed] [Google Scholar]
  28. Tsai C. J., Kumar S., Ma B., Nussinov R. Folding funnels, binding funnels, and protein function. Protein Sci. 1999 Jun;8(6):1181–1190. doi: 10.1110/ps.8.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vérétout F., Delaye M., Tardieu A. Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of alpha-crystallin solutions. J Mol Biol. 1989 Feb 20;205(4):713–728. doi: 10.1016/0022-2836(89)90316-1. [DOI] [PubMed] [Google Scholar]
  30. Wieligmann K., Norledge B., Jaenicke R., Mayr E. M. Eye lens betaB2-crystallin: circular permutation does not influence the oligomerization state but enhances the conformational stability. J Mol Biol. 1998 Jul 24;280(4):721–729. doi: 10.1006/jmbi.1998.1887. [DOI] [PubMed] [Google Scholar]
  31. Wistow G. J., Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem. 1988;57:479–504. doi: 10.1146/annurev.bi.57.070188.002403. [DOI] [PubMed] [Google Scholar]
  32. Wistow G. Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci. 1993 Aug;18(8):301–306. doi: 10.1016/0968-0004(93)90041-k. [DOI] [PubMed] [Google Scholar]
  33. Xu D., Tsai C. J., Nussinov R. Mechanism and evolution of protein dimerization. Protein Sci. 1998 Mar;7(3):533–544. doi: 10.1002/pro.5560070301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. de Jong W. W., Hendriks W., Mulders J. W., Bloemendal H. Evolution of eye lens crystallins: the stress connection. Trends Biochem Sci. 1989 Sep;14(9):365–368. doi: 10.1016/0968-0004(89)90009-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES