Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):2127–2137. doi: 10.1016/S0006-3495(00)76759-2

Global analysis of fluorescence lifetime imaging microscopy data.

P J Verveer 1, A Squire 1, P I Bastiaens 1
PMCID: PMC1300804  PMID: 10733990

Abstract

Global analysis techniques are described for frequency domain fluorescence lifetime imaging microscopy (FLIM) data. These algorithms exploit the prior knowledge that only a limited number of fluorescent molecule species whose lifetimes do not vary spatially are present in the sample. Two approaches to implementing the lifetime invariance constraint are described. In the lifetime invariant fit method, each image in the lifetime image sequence is spatially averaged to obtain an improved signal-to-noise ratio. The lifetime estimations from these averaged data are used to recover the fractional contribution to the steady-state fluorescence on a pixel-by-pixel basis for each species. The second, superior, approach uses a global analysis technique that simultaneously fits the fractional contributions in all pixels and the spatially invariant lifetimes. In frequency domain FLIM the maximum number of lifetimes that can be fit with the global analysis method is twice the number of lifetimes that can be fit with conventional approaches. As a result, it is possible to discern two lifetimes with a single-frequency FLIM setup. The algorithms were tested on simulated data and then applied to separate the cellular distributions of coexpressed green fluorescent proteins in living cells.

Full Text

The Full Text of this article is available as a PDF (272.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastiaens P. I., Jovin T. M. Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C beta I. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8407–8412. doi: 10.1073/pnas.93.16.8407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bastiaens P. I., Squire A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 1999 Feb;9(2):48–52. doi: 10.1016/s0962-8924(98)01410-x. [DOI] [PubMed] [Google Scholar]
  3. Beechem J. M., Brand L. Global analysis of fluorescence decay: applications to some unusual experimental and theoretical studies. Photochem Photobiol. 1986 Sep;44(3):323–329. doi: 10.1111/j.1751-1097.1986.tb04671.x. [DOI] [PubMed] [Google Scholar]
  4. Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
  5. Dong C. Y., So P. T., French T., Gratton E. Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophys J. 1995 Dec;69(6):2234–2242. doi: 10.1016/S0006-3495(95)80148-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. French T., So P. T., Weaver D. J., Jr, Coelho-Sampaio T., Gratton E., Voss E. W., Jr, Carrero J. Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing. J Microsc. 1997 Mar;185(Pt 3):339–353. doi: 10.1046/j.1365-2818.1997.d01-632.x. [DOI] [PubMed] [Google Scholar]
  7. Gadella T. W., Jr, Jovin T. M. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol. 1995 Jun;129(6):1543–1558. doi: 10.1083/jcb.129.6.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gadella TW, Jr, van der Krogt GN, Bisseling T. GFP-based FRET microscopy in living plant cells. Trends Plant Sci. 1999 Jul;4(7):287–291. doi: 10.1016/s1360-1385(99)01426-0. [DOI] [PubMed] [Google Scholar]
  9. Gratton E., Limkeman M. A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J. 1983 Dec;44(3):315–324. doi: 10.1016/S0006-3495(83)84305-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gratton E., Limkeman M., Lakowicz J. R., Maliwal B. P., Cherek H., Laczko G. Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys J. 1984 Oct;46(4):479–486. doi: 10.1016/S0006-3495(84)84044-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lakowicz J. R., Laczko G., Cherek H., Gratton E., Limkeman M. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys J. 1984 Oct;46(4):463–477. doi: 10.1016/S0006-3495(84)84043-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lakowicz J. R., Szmacinski H., Nowaczyk K., Johnson M. L. Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1271–1275. doi: 10.1073/pnas.89.4.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lakowicz J. R., Szmacinski H., Nowaczyk K., Lederer W. J., Kirby M. S., Johnson M. L. Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2. Cell Calcium. 1994 Jan;15(1):7–27. doi: 10.1016/0143-4160(94)90100-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ng T., Squire A., Hansra G., Bornancin F., Prevostel C., Hanby A., Harris W., Barnes D., Schmidt S., Mellor H. Imaging protein kinase Calpha activation in cells. Science. 1999 Mar 26;283(5410):2085–2089. doi: 10.1126/science.283.5410.2085. [DOI] [PubMed] [Google Scholar]
  15. Pepperkok R., Squire A., Geley S., Bastiaens P. I. Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol. 1999 Mar 11;9(5):269–272. doi: 10.1016/s0960-9822(99)80117-1. [DOI] [PubMed] [Google Scholar]
  16. Sanders R., Draaijer A., Gerritsen H. C., Houpt P. M., Levine Y. K. Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal Biochem. 1995 May 20;227(2):302–308. doi: 10.1006/abio.1995.1285. [DOI] [PubMed] [Google Scholar]
  17. Squire A., Bastiaens P. I. Three dimensional image restoration in fluorescence lifetime imaging microscopy. J Microsc. 1999 Jan;193(Pt 1):36–49. doi: 10.1046/j.1365-2818.1999.00427.x. [DOI] [PubMed] [Google Scholar]
  18. Squire A., Verveer P. J., Bastiaens P. I. Multiple frequency fluorescence lifetime imaging microscopy. J Microsc. 2000 Feb;197(Pt 2):136–149. doi: 10.1046/j.1365-2818.2000.00651.x. [DOI] [PubMed] [Google Scholar]
  19. Szmacinski H., Lakowicz J. R. Possibility of simultaneously measuring low and high calcium concentrations using Fura-2 and lifetime-based sensing. Cell Calcium. 1995 Jul;18(1):64–75. doi: 10.1016/0143-4160(95)90046-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES