Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):2170–2179. doi: 10.1016/S0006-3495(00)76764-6

Imaging and tracking of single GFP molecules in solution.

U Kubitscheck 1, O Kückmann 1, T Kues 1, R Peters 1
PMCID: PMC1300809  PMID: 10733995

Abstract

Visualization and tracking of single fluorescent molecules is a recent development in optical microscopy holding great promise for the study of cell biological processes. However, all experimental strategies realized so far confined the observation to extremely thin interfacial layers. The detection and characterization of single molecules in three-dimensionally extended systems such as living cells has yet to be accomplished. We show, here, for the first time that single protein molecules can be visualized and tracked in three-dimensional (3D) samples at room temperature. Using a wide-field fluorescence microscope equipped with an Ar(+)-laser and a low-light-level CCD camera, single molecules of the green fluorescent protein (GFP) were detected in gels and viscous solutions at depths of up to approximately 10 microm from the interface. A time resolution of 5 ms was achieved by a high-speed framing mode. The two-dimensional localization accuracy was determined to be approximately 30 nm. The number of photons emitted by single GFP molecules before photodestruction was found to be < or = 4 * 10(5). Freely diffusing GFP molecules could be tracked over up to nine images acquired at a frame rate of approximately 80 Hz. From the trajectories, the diffusion coefficients of single GFP molecules were derived and found to agree well with expectation and microphotolysis measurements. Our results imply that the visualization and tracking of single molecules in living cells is possible.

Full Text

The Full Text of this article is available as a PDF (455.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dickson R. M., Cubitt A. B., Tsien R. Y., Moerner W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature. 1997 Jul 24;388(6640):355–358. doi: 10.1038/41048. [DOI] [PubMed] [Google Scholar]
  3. Dickson R. M., Norris D. J., Tzeng Y. L., Moerner W. E. Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science. 1996 Nov 8;274(5289):966–969. doi: 10.1126/science.274.5289.966. [DOI] [PubMed] [Google Scholar]
  4. Femino A. M., Fay F. S., Fogarty K., Singer R. H. Visualization of single RNA transcripts in situ. Science. 1998 Apr 24;280(5363):585–590. doi: 10.1126/science.280.5363.585. [DOI] [PubMed] [Google Scholar]
  5. Gimzewski JK, Joachim C. Nanoscale science of single molecules using local probes . Science. 1999 Mar 12;283(5408):1683–1688. doi: 10.1126/science.283.5408.1683. [DOI] [PubMed] [Google Scholar]
  6. Harada Y., Funatsu T., Tokunaga M., Saito K., Higuchi H., Ishii Y., Yanagida T. Single molecule imaging and nanomanipulation of biomolecules. Methods Cell Biol. 1998;55:117–128. doi: 10.1016/s0091-679x(08)60405-7. [DOI] [PubMed] [Google Scholar]
  7. Kubitscheck U., Kues T., Peters R. Visualization of nuclear pore complex and its distribution by confocal laser scanning microscopy. Methods Enzymol. 1999;307:207–230. doi: 10.1016/s0076-6879(99)07015-9. [DOI] [PubMed] [Google Scholar]
  8. Kubitscheck U., Wedekind P., Peters R. Lateral diffusion measurement at high spatial resolution by scanning microphotolysis in a confocal microscope. Biophys J. 1994 Sep;67(3):948–956. doi: 10.1016/S0006-3495(94)80596-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kubitscheck U., Wedekind P., Zeidler O., Grote M., Peters R. Single nuclear pores visualized by confocal microscopy and image processing. Biophys J. 1996 May;70(5):2067–2077. doi: 10.1016/S0006-3495(96)79811-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lang I., Scholz M., Peters R. Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J Cell Biol. 1986 Apr;102(4):1183–1190. doi: 10.1083/jcb.102.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moerner W. E., Orrit M. Illuminating single molecules in condensed matter. Science. 1999 Mar 12;283(5408):1670–1676. doi: 10.1126/science.283.5408.1670. [DOI] [PubMed] [Google Scholar]
  12. Nie S., Zare R. N. Optical detection of single molecules. Annu Rev Biophys Biomol Struct. 1997;26:567–596. doi: 10.1146/annurev.biophys.26.1.567. [DOI] [PubMed] [Google Scholar]
  13. Ormö M., Cubitt A. B., Kallio K., Gross L. A., Tsien R. Y., Remington S. J. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996 Sep 6;273(5280):1392–1395. doi: 10.1126/science.273.5280.1392. [DOI] [PubMed] [Google Scholar]
  14. Sase I., Miyata H., Corrie J. E., Craik J. S., Kinosita K., Jr Real time imaging of single fluorophores on moving actin with an epifluorescence microscope. Biophys J. 1995 Aug;69(2):323–328. doi: 10.1016/S0006-3495(95)79937-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saxton M. J., Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. [DOI] [PubMed] [Google Scholar]
  16. Seksek O., Biwersi J., Verkman A. S. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol. 1997 Jul 14;138(1):131–142. doi: 10.1083/jcb.138.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith P. R., Morrison I. E., Wilson K. M., Fernández N., Cherry R. J. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys J. 1999 Jun;76(6):3331–3344. doi: 10.1016/S0006-3495(99)77486-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Soumpasis D. M. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J. 1983 Jan;41(1):95–97. doi: 10.1016/S0006-3495(83)84410-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
  20. Vale R. D., Funatsu T., Pierce D. W., Romberg L., Harada Y., Yanagida T. Direct observation of single kinesin molecules moving along microtubules. Nature. 1996 Apr 4;380(6573):451–453. doi: 10.1038/380451a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weiss S. Fluorescence spectroscopy of single biomolecules. Science. 1999 Mar 12;283(5408):1676–1683. doi: 10.1126/science.283.5408.1676. [DOI] [PubMed] [Google Scholar]
  22. Xie X. S., Trautman J. K. Optical studies of single molecules at room temperature. Annu Rev Phys Chem. 1998;49:441–480. doi: 10.1146/annurev.physchem.49.1.441. [DOI] [PubMed] [Google Scholar]
  23. Xu X. H., Yeung E. S. Direct measurement of single-molecule diffusion and photodecomposition in free solution. Science. 1997 Feb 21;275(5303):1106–1109. doi: 10.1126/science.275.5303.1106. [DOI] [PubMed] [Google Scholar]
  24. Yang F., Moss L. G., Phillips G. N., Jr The molecular structure of green fluorescent protein. Nat Biotechnol. 1996 Oct;14(10):1246–1251. doi: 10.1038/nbt1096-1246. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES