Abstract
Modifications can be made to F-actin that do not interfere with the binding of myosin but inhibit force generation, suggesting that actin's internal dynamics are important for muscle contraction. Observations from electron microscopy and x-ray diffraction have shown that subunits in F-actin have a relatively fixed axial rise but a variable twist. One possible explanation for this is that the actin subunits randomly exist in different discrete states of "twist, " with a significant energy barrier separating these states. This would result in very slow torsional transitions. Paracrystals impose increased order on F-actin filaments by reducing the variability in twist. By looking at filaments that have recently been dissociated from paracrystals, we find that F-actin retains a "memory" of its previous environment that persists for many seconds. This would be consistent with slow torsional transitions between discrete states of twist.
Full Text
The Full Text of this article is available as a PDF (274.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- DeRosier D. J., Tilney L. G. How actin filaments pack into bundles. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):525–540. doi: 10.1101/sqb.1982.046.01.049. [DOI] [PubMed] [Google Scholar]
- Drummond D. R., Peckham M., Sparrow J. C., White D. C. Alteration in crossbridge kinetics caused by mutations in actin. Nature. 1990 Nov 29;348(6300):440–442. doi: 10.1038/348440a0. [DOI] [PubMed] [Google Scholar]
- Egelman E. H. An algorithm for straightening images of curved filamentous structures. Ultramicroscopy. 1986;19(4):367–373. doi: 10.1016/0304-3991(86)90096-3. [DOI] [PubMed] [Google Scholar]
- Egelman E. H., DeRosier D. J. Image analysis shows that variations in actin crossover spacings are random, not compensatory. Biophys J. 1992 Nov;63(5):1299–1305. doi: 10.1016/S0006-3495(92)81716-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egelman E. H., Francis N., DeRosier D. J. F-actin is a helix with a random variable twist. Nature. 1982 Jul 8;298(5870):131–135. doi: 10.1038/298131a0. [DOI] [PubMed] [Google Scholar]
- Egelman E. H., Francis N., DeRosier D. J. Helical disorder and the filament structure of F-actin are elucidated by the angle-layered aggregate. J Mol Biol. 1983 Jun 5;166(4):605–629. doi: 10.1016/s0022-2836(83)80286-1. [DOI] [PubMed] [Google Scholar]
- Francis N. R., DeRosier D. J. A polymorphism peculiar to bipolar actin bundles. Biophys J. 1990 Sep;58(3):771–776. doi: 10.1016/S0006-3495(90)82419-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huxley H. E., Stewart A., Sosa H., Irving T. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J. 1994 Dec;67(6):2411–2421. doi: 10.1016/S0006-3495(94)80728-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lednev V. V., Popp D. Supercoiling of f-actin filaments. J Struct Biol. 1990 May;103(3):225–231. doi: 10.1016/1047-8477(90)90040-j. [DOI] [PubMed] [Google Scholar]
- Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
- McGough A., Pope B., Chiu W., Weeds A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol. 1997 Aug 25;138(4):771–781. doi: 10.1083/jcb.138.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mihashi K., Yoshimura H., Nishio T., Ikegami A., Kinosita K., Jr Internal motion of F-actin in 10(-6)-10(-3) s time range studied by transient absorption anisotropy: detection of torsional motion. J Biochem. 1983 Jun;93(6):1705–1707. doi: 10.1093/oxfordjournals.jbchem.a134312. [DOI] [PubMed] [Google Scholar]
- Prochniewicz E., Yanagida T. Inhibition of sliding movement of F-actin by crosslinking emphasizes the role of actin structure in the mechanism of motility. J Mol Biol. 1990 Dec 5;216(3):761–772. doi: 10.1016/0022-2836(90)90397-5. [DOI] [PubMed] [Google Scholar]
- Prochniewicz E., Zhang Q., Howard E. C., Thomas D. D. Microsecond rotational dynamics of actin: spectroscopic detection and theoretical simulation. J Mol Biol. 1996 Jan 26;255(3):446–457. doi: 10.1006/jmbi.1996.0037. [DOI] [PubMed] [Google Scholar]
- Rebello C. A., Ludescher R. D. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin. Biochemistry. 1998 Oct 13;37(41):14529–14538. doi: 10.1021/bi981240i. [DOI] [PubMed] [Google Scholar]
- Schwyter D. H., Kron S. J., Toyoshima Y. Y., Spudich J. A., Reisler E. Subtilisin cleavage of actin inhibits in vitro sliding movement of actin filaments over myosin. J Cell Biol. 1990 Aug;111(2):465–470. doi: 10.1083/jcb.111.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman M. B., Jakana J., Sun S., Matsudaira P., Chiu W., Schmid M. F. The three-dimensional structure of the Limulus acrosomal process: a dynamic actin bundle. J Mol Biol. 1999 Nov 19;294(1):139–149. doi: 10.1006/jmbi.1999.3222. [DOI] [PubMed] [Google Scholar]
- Takezawa Y., Kim D. S., Ogino M., Sugimoto Y., Kobayashi T., Arata T., Wakabayashi K. Backward movements of cross-bridges by application of stretch and by binding of MgADP to skeletal muscle fibers in the rigor state as studied by x-ray diffraction. Biophys J. 1999 Apr;76(4):1770–1783. doi: 10.1016/S0006-3495(99)77338-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor K. A., Reedy M. C., Reedy M. K., Crowther R. A. Crossbridges in the complete unit cell of rigor insect flight muscle imaged by three-dimensional reconstruction from oblique sections. J Mol Biol. 1993 Sep 5;233(1):86–108. doi: 10.1006/jmbi.1993.1487. [DOI] [PubMed] [Google Scholar]
- Tsuda Y., Yasutake H., Ishijima A., Yanagida T. Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12937–12942. doi: 10.1073/pnas.93.23.12937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yasuda R., Miyata H., Kinosita K., Jr Direct measurement of the torsional rigidity of single actin filaments. J Mol Biol. 1996 Oct 25;263(2):227–236. doi: 10.1006/jmbi.1996.0571. [DOI] [PubMed] [Google Scholar]
- Yoshimura H., Nishio T., Mihashi K., Kinosita K., Jr, Ikegami A. Torsional motion of eosin-labeled F-actin as detected in the time-resolved anisotropy decay of the probe in the sub-millisecond time range. J Mol Biol. 1984 Nov 5;179(3):453–467. doi: 10.1016/0022-2836(84)90075-5. [DOI] [PubMed] [Google Scholar]
- Zhu J., Penczek P. A., Schröder R., Frank J. Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. J Struct Biol. 1997 Apr;118(3):197–219. doi: 10.1006/jsbi.1997.3845. [DOI] [PubMed] [Google Scholar]