Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2222–2240. doi: 10.1016/S0006-3495(00)76770-1

The probability of quantal secretion within an array of calcium channels of an active zone.

M R Bennett 1, L Farnell 1, W G Gibson 1
PMCID: PMC1300815  PMID: 10777722

Abstract

A Monte Carlo analysis has been made of calcium dynamics in submembranous domains of active zones in which the calcium contributed by the opening of many channels is pooled. The kinetics of calcium ions in these domains has been determined using simulations for channels arranged in different geometries, according to the active zone under consideration: rectangular grids for varicosities and boutons and lines for motor-nerve terminals. The effects of endogenous fixed and mobile buffers on the two-dimensional distribution of free calcium ions at these active zones are then given, together with the extent to which these are perturbed and can be detected with different affinity calcium indicators when the calcium channels open stochastically under an action potential. A Monte Carlo analysis of how the dynamics of calcium ions in the submembranous domains determines the probability of exocytosis from docked vesicles is also presented. The spatial distribution of exocytosis from rectangular arrays of secretory units is such that exocytosis is largely excluded from the edges of the array, due to the effects of endogenous buffers. There is a steeper than linear increase in quantal release with an increase in the number of secretory units in the array, indicating that there is not just a local interaction between secretory units. Conditioning action potentials promote an increase in quantal release by a subsequent action potential primarily by depleting the fixed and mobile buffers in the center of the array. In the case of two parallel lines of secretory units exocytosis is random, and diffusion, together with the endogenous calcium buffers, ensures that the secretory units only interact over relatively short distances. As a consequence of this and in contrast to the case of the rectangular array, there is a linear relationship between the extent of quantal secretion from these zones and their length, for lengths greater than a critical value. This Monte Carlo analysis successfully predicts the relationship between the size and geometry of active zones and the probability of quantal secretion at these, the existence of quantal versus multiquantal release at different active zones, and the origins of the F1 phase of facilitation in synapses possessing different active zone geometries.

Full Text

The Full Text of this article is available as a PDF (673.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. R., Farnell L., Gibson W. G. On the origin of skewed distributions of spontaneous synaptic potentials in autonomic ganglia. Proc Biol Sci. 1998 Feb 22;265(1393):271–277. doi: 10.1098/rspb.1998.0292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett M. R., Farnell L., Gibson W. G. The probability of quantal secretion near a single calcium channel of an active zone. Biophys J. 2000 May;78(5):2201–2221. doi: 10.1016/S0006-3495(00)76769-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. R., Florin T., Pettigrew A. G. The effect of calcium ions on the binomial statistic parameters that control acetylcholine release at preganglionic nerve terminals. J Physiol. 1976 Jun;257(3):597–620. doi: 10.1113/jphysiol.1976.sp011387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. R., Gibson W. G., Robinson J. Probabilistic secretion of quanta and the synaptosecretosome hypothesis: evoked release at active zones of varicosities, boutons, and endplates. Biophys J. 1997 Oct;73(4):1815–1829. doi: 10.1016/S0006-3495(97)78212-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett M. R., Ho S. Probabilistic secretion of quanta from nerve terminals in avian ciliary ganglia modulated by adenosine. J Physiol. 1991;440:513–527. doi: 10.1113/jphysiol.1991.sp018722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett M. R., Karunanithi S., Lavidis N. A. Probabilistic secretion of quanta from nerve terminals in toad (Bufo marinus) muscle modulated by adenosine. J Physiol. 1991 Feb;433:421–434. doi: 10.1113/jphysiol.1991.sp018435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bennett M. R., Robinson J., Phipps M. C., Karunanithi S., Lin Y. Q., Cottee L. Quantal components of spontaneous excitatory junction potentials at visualised varicosities. J Auton Nerv Syst. 1996 Jan 5;56(3):161–174. doi: 10.1016/0165-1838(95)00086-0. [DOI] [PubMed] [Google Scholar]
  8. Borst J. G., Sakmann B. Calcium influx and transmitter release in a fast CNS synapse. Nature. 1996 Oct 3;383(6599):431–434. doi: 10.1038/383431a0. [DOI] [PubMed] [Google Scholar]
  9. Brain K. L., Bennett M. R. Calcium in sympathetic varicosities of mouse vas deferens during facilitation, augmentation and autoinhibition. J Physiol. 1997 Aug 1;502(Pt 3):521–536. doi: 10.1111/j.1469-7793.1997.521bj.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brain K. L., Cottee L. J., Bennett M. R. Varicosities of single sympathetic nerve terminals possess syntaxin zones and different synaptotagmin N-terminus labelling following stimulation. J Neurocytol. 1997 Jul;26(7):491–500. doi: 10.1023/a:1018533524643. [DOI] [PubMed] [Google Scholar]
  11. Cooper R. L., Winslow J. L., Govind C. K., Atwood H. L. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release. J Neurophysiol. 1996 Jun;75(6):2451–2466. doi: 10.1152/jn.1996.75.6.2451. [DOI] [PubMed] [Google Scholar]
  12. Delcour A. H., Lipscombe D., Tsien R. W. Multiple modes of N-type calcium channel activity distinguished by differences in gating kinetics. J Neurosci. 1993 Jan;13(1):181–194. doi: 10.1523/JNEUROSCI.13-01-00181.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heidelberger R., Heinemann C., Neher E., Matthews G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature. 1994 Oct 6;371(6497):513–515. doi: 10.1038/371513a0. [DOI] [PubMed] [Google Scholar]
  14. Heinemann C., Chow R. H., Neher E., Zucker R. S. Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys J. 1994 Dec;67(6):2546–2557. doi: 10.1016/S0006-3495(94)80744-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klingauf J., Neher E. Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J. 1997 Feb;72(2 Pt 1):674–690. doi: 10.1016/s0006-3495(97)78704-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lavidis N. A., Bennett M. R. Probabilistic secretion of quanta from successive sets of visualized varicosities along single sympathetic nerve terminals. J Auton Nerv Syst. 1993 Apr;43(1):41–50. doi: 10.1016/0165-1838(93)90320-t. [DOI] [PubMed] [Google Scholar]
  18. Losavio A., Muchnik S. Spontaneous acetylcholine release in mammalian neuromuscular junctions. Am J Physiol. 1997 Dec;273(6 Pt 1):C1835–C1841. doi: 10.1152/ajpcell.1997.273.6.C1835. [DOI] [PubMed] [Google Scholar]
  19. Murthy V. N., Sejnowski T. J., Stevens C. F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron. 1997 Apr;18(4):599–612. doi: 10.1016/s0896-6273(00)80301-3. [DOI] [PubMed] [Google Scholar]
  20. Pfenninger K., Akert K., Moor H., Sandri C. Freeze-fracturing of presynaptic membranes in the central nervous system. Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):387–387. doi: 10.1098/rstb.1971.0071. [DOI] [PubMed] [Google Scholar]
  21. Pfenninger K., Akert K., Moor H., Sandri C. The fine structure of freeze-fractured presynaptic membranes. J Neurocytol. 1972 Sep;1(2):129–149. doi: 10.1007/BF01099180. [DOI] [PubMed] [Google Scholar]
  22. Roberts W. M. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci. 1994 May;14(5 Pt 2):3246–3262. doi: 10.1523/JNEUROSCI.14-05-03246.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robitaille R., Adler E. M., Charlton M. P. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron. 1990 Dec;5(6):773–779. doi: 10.1016/0896-6273(90)90336-e. [DOI] [PubMed] [Google Scholar]
  24. Robitaille R., Charlton M. P. Frequency facilitation is not caused by residual ionized calcium at the frog neuromuscular junction. Ann N Y Acad Sci. 1991;635:492–494. doi: 10.1111/j.1749-6632.1991.tb36537.x. [DOI] [PubMed] [Google Scholar]
  25. Robitaille R., Garcia M. L., Kaczorowski G. J., Charlton M. P. Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron. 1993 Oct;11(4):645–655. doi: 10.1016/0896-6273(93)90076-4. [DOI] [PubMed] [Google Scholar]
  26. Stevens C. F., Wang Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature. 1994 Oct 20;371(6499):704–707. doi: 10.1038/371704a0. [DOI] [PubMed] [Google Scholar]
  27. Stevens C. F., Wang Y. Facilitation and depression at single central synapses. Neuron. 1995 Apr;14(4):795–802. doi: 10.1016/0896-6273(95)90223-6. [DOI] [PubMed] [Google Scholar]
  28. Südhof T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995 Jun 22;375(6533):645–653. doi: 10.1038/375645a0. [DOI] [PubMed] [Google Scholar]
  29. Tanabe N., Kijima H. Ca(2+)-dependent and -independent components of transmitter release at the frog neuromuscular junction. J Physiol. 1992 Sep;455:271–289. doi: 10.1113/jphysiol.1992.sp019301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomson P. C., Lavidis N. A., Robinson J., Bennett M. R. Probabilistic secretion of quanta at somatic motor-nerve terminals: the fusion-pore model, quantal detection and autoinhibition. Philos Trans R Soc Lond B Biol Sci. 1995 Aug 29;349(1328):197–214. doi: 10.1098/rstb.1995.0103. [DOI] [PubMed] [Google Scholar]
  31. Van der Kloot W. Estimating the timing of quantal releases during end-plate currents at the frog neuromuscular junction. J Physiol. 1988 Aug;402:595–603. doi: 10.1113/jphysiol.1988.sp017224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vincent P., Marty A. Fluctuations of inhibitory postsynaptic currents in Purkinje cells from rat cerebellar slices. J Physiol. 1996 Jul 1;494(Pt 1):183–199. doi: 10.1113/jphysiol.1996.sp021484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Westenbroek R. E., Sakurai T., Elliott E. M., Hell J. W., Starr T. V., Snutch T. P., Catterall W. A. Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci. 1995 Oct;15(10):6403–6418. doi: 10.1523/JNEUROSCI.15-10-06403.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Winslow J. L., Duffy S. N., Charlton M. P. Homosynaptic facilitation of transmitter release in crayfish is not affected by mobile calcium chelators: implications for the residual ionized calcium hypothesis from electrophysiological and computational analyses. J Neurophysiol. 1994 Oct;72(4):1769–1793. doi: 10.1152/jn.1994.72.4.1769. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES