Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2285–2297. doi: 10.1016/S0006-3495(00)76775-0

Three-dimensional motion of the organ of Corti.

W Hemmert 1, H P Zenner 1, A W Gummer 1
PMCID: PMC1300820  PMID: 10777727

Abstract

The vibration of the organ of Corti, a three-dimensional micromechanical structure that incorporates the sensory cells of the hearing organ, was measured in three mutually orthogonal directions. This was achieved by coupling the light of a laser Doppler vibrometer into the side arm of an epifluorescence microscope to measure velocity along the optical axis of the microscope, called the transversal direction. Displacements were measured in the plane orthogonal to the transverse direction with a differential photodiode mounted on the microscope in the focal plane. Vibration responses were measured in the fourth turn of a temporal-bone preparation of the guinea-pig cochlea. Responses were corrected for a "fast" wave component caused by the presence of the hole in the cochlear wall, made to view the structures. The frequency responses of the basilar membrane and the reticular lamina were similar, with little phase differences between the vibration components. Their motion was rectilinear and vertical to the surface of their membranes. The organ of Corti rotated about a point near the edge of the inner limbus. A second vibration mode was detected in the motion of the tectorial membrane. This vibration mode was directed parallel to the reticular lamina and became apparent for frequencies above approximately 0.5 oct below the characteristic frequency. This radial vibration mode presumably controls the shearing action of the hair bundles of the outer hair cells.

Full Text

The Full Text of this article is available as a PDF (182.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. B. Cochlear micromechanics--a physical model of transduction. J Acoust Soc Am. 1980 Dec;68(6):1660–1670. doi: 10.1121/1.385198. [DOI] [PubMed] [Google Scholar]
  2. Bosher S. K. The nature of the negative endocochlear potentials produced by anoxia and ethacrynic acid in the rat and guinea-pig. J Physiol. 1979 Aug;293:329–345. doi: 10.1113/jphysiol.1979.sp012892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brownell W. E., Bader C. R., Bertrand D., de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985 Jan 11;227(4683):194–196. doi: 10.1126/science.3966153. [DOI] [PubMed] [Google Scholar]
  4. Cooper N. P., Rhode W. S. Nonlinear mechanics at the apex of the guinea-pig cochlea. Hear Res. 1995 Feb;82(2):225–243. doi: 10.1016/0378-5955(94)00180-x. [DOI] [PubMed] [Google Scholar]
  5. Dallos P., Evans B. N. High-frequency motility of outer hair cells and the cochlear amplifier. Science. 1995 Mar 31;267(5206):2006–2009. doi: 10.1126/science.7701325. [DOI] [PubMed] [Google Scholar]
  6. Dallos P. Neurobiology of cochlear inner and outer hair cells: intracellular recordings. Hear Res. 1986;22:185–198. doi: 10.1016/0378-5955(86)90095-x. [DOI] [PubMed] [Google Scholar]
  7. Decraemer W. F., Khanna S. M., Funnell W. R. A method for determining three-dimensional vibration in the ear. Hear Res. 1994 Jun 15;77(1-2):19–37. doi: 10.1016/0378-5955(94)90250-x. [DOI] [PubMed] [Google Scholar]
  8. Evans E. F. The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol. 1972 Oct;226(1):263–287. doi: 10.1113/jphysiol.1972.sp009984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frank G., Hemmert W., Gummer A. W. Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4420–4425. doi: 10.1073/pnas.96.8.4420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gitter A. H., Zenner H. P. Electromotile responses and frequency tuning of isolated outer hair cells of the guinea pig cochlea. Eur Arch Otorhinolaryngol. 1995;252(1):15–19. doi: 10.1007/BF00171434. [DOI] [PubMed] [Google Scholar]
  11. Gummer A. W., Hemmert W., Zenner H. P. Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8727–8732. doi: 10.1073/pnas.93.16.8727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gummer A. W., Smolders J. W., Klinke R. Basilar membrane motion in the pigeon measured with the Mössbauer technique. Hear Res. 1987;29(1):63–92. doi: 10.1016/0378-5955(87)90206-1. [DOI] [PubMed] [Google Scholar]
  13. Hao L. F., Khanna S. M. Reissner's membrane vibrations in the apical turn of a living guinea pig cochlea. Hear Res. 1996 Sep 15;99(1-2):176–189. doi: 10.1016/s0378-5955(96)00099-8. [DOI] [PubMed] [Google Scholar]
  14. Hemmert W., Zenner H., Gummer A. W. Characteristics of the travelling wave in the low-frequency region of a temporal-bone preparation of the guinea-pig cochlea. Hear Res. 2000 Apr;142(1-2):184–202. doi: 10.1016/s0378-5955(00)00017-4. [DOI] [PubMed] [Google Scholar]
  15. Kolston P. J., Ashmore J. F. Finite element micromechanical modeling of the cochlea in three dimensions. J Acoust Soc Am. 1996 Jan;99(1):455–467. doi: 10.1121/1.414557. [DOI] [PubMed] [Google Scholar]
  16. Kronester-Frei A. The effect of changes in endolymphatic ion concentrations on the tectorial membrane. Hear Res. 1979 Mar;1(2):81–94. doi: 10.1016/0378-5955(79)90019-4. [DOI] [PubMed] [Google Scholar]
  17. Kros C. J., Rüsch A., Richardson G. P. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc Biol Sci. 1992 Aug 22;249(1325):185–193. doi: 10.1098/rspb.1992.0102. [DOI] [PubMed] [Google Scholar]
  18. Lim D. J. Cochlear anatomy related to cochlear micromechanics. A review. J Acoust Soc Am. 1980 May;67(5):1686–1695. doi: 10.1121/1.384295. [DOI] [PubMed] [Google Scholar]
  19. Maier H., Zinn C., Rothe A., Tiziani H., Gummer A. W. Development of a narrow water-immersion objective for laserinterferometric and electrophysiological applications in cell biology. J Neurosci Methods. 1997 Nov 7;77(1):31–41. doi: 10.1016/s0165-0270(97)00105-2. [DOI] [PubMed] [Google Scholar]
  20. Nobili R., Mammano F. Biophysics of the cochlea. II: Stationary nonlinear phenomenology. J Acoust Soc Am. 1996 Apr;99(4 Pt 1):2244–2255. doi: 10.1121/1.415412. [DOI] [PubMed] [Google Scholar]
  21. Preyer S., Hemmert W., Pfister M., Zenner H. P., Gummer A. W. Frequency response of mature guinea-pig outer hair cells to stereociliary displacement. Hear Res. 1994 Jun 15;77(1-2):116–124. doi: 10.1016/0378-5955(94)90259-3. [DOI] [PubMed] [Google Scholar]
  22. Rhode W. S., Geisler C. D. Model of the displacement between opposing points on the tectorial membrane and reticular lamina. J Acoust Soc Am. 1967 Jul;42(1):185–190. doi: 10.1121/1.1910547. [DOI] [PubMed] [Google Scholar]
  23. Robles L., Rhode W. S., Geisler C. D. Transient response of the basilar membrane measured in squirrel monkeys using the Mössbauer effect. J Acoust Soc Am. 1976 Apr;59(4):926–939. doi: 10.1121/1.380953. [DOI] [PubMed] [Google Scholar]
  24. Rose J. E., Hind J. E., Anderson D. J., Brugge J. F. Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J Neurophysiol. 1971 Jul;34(4):685–699. doi: 10.1152/jn.1971.34.4.685. [DOI] [PubMed] [Google Scholar]
  25. Ulfendahl M., Khanna S. M., Fridberger A., Flock A., Flock B., Jäger W. Mechanical response characteristics of the hearing organ in the low-frequency regions of the cochlea. J Neurophysiol. 1996 Dec;76(6):3850–3862. doi: 10.1152/jn.1996.76.6.3850. [DOI] [PubMed] [Google Scholar]
  26. Ulfendahl M., Khanna S. M., Heneghan C. Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry. Neuroreport. 1995 May 30;6(8):1157–1160. doi: 10.1097/00001756-199505300-00021. [DOI] [PubMed] [Google Scholar]
  27. Wilson J. P., Johnstone J. R. Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe. J Acoust Soc Am. 1975 Mar;57(3):705–723. doi: 10.1121/1.380472. [DOI] [PubMed] [Google Scholar]
  28. Zenner H. P., Zimmermann U., Schmitt U. Reversible contraction of isolated mammalian cochlear hair cells. Hear Res. 1985 May;18(2):127–133. doi: 10.1016/0378-5955(85)90004-8. [DOI] [PubMed] [Google Scholar]
  29. Zinn C., Maier H., Zenner H., Gummer A. W. Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea. Hear Res. 2000 Apr;142(1-2):159–183. doi: 10.1016/s0378-5955(00)00012-5. [DOI] [PubMed] [Google Scholar]
  30. Zwislocki J. J. Five decades of research on cochlear mechanics. J Acoust Soc Am. 1980 May;67(5):1679–1685. doi: 10.1121/1.384294. [DOI] [PubMed] [Google Scholar]
  31. Zwislocki J. J., Kletsky E. J. Tectorial membrane: a possible effect on frequency analysis in the cochlea. Science. 1979 May 11;204(4393):639–641. doi: 10.1126/science.432671. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES