Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2307–2320. doi: 10.1016/S0006-3495(00)76777-4

Structural basis for ligand selectivity of heteromeric olfactory cyclic nucleotide-gated channels.

M S Shapiro 1, W N Zagotta 1
PMCID: PMC1300822  PMID: 10777729

Abstract

In vertebrate olfactory receptors, cAMP produced by odorants opens cyclic nucleotide-gated (CNG) channels, which allow Ca(2+) entry and depolarization of the cell. These CNG channels are composed of alpha subunits and at least two types of beta subunits that are required for increased cAMP selectivity. We studied the molecular basis for the altered cAMP selectivity produced by one of the beta subunits (CNG5, CNCalpha4, OCNC2) using cloned rat olfactory CNG channels expressed in Xenopus oocytes. Compared with alpha subunit homomultimers (alpha channels), channels composed of alpha and beta subunits (alpha+beta channels) were half-activated (K(1/2)) by eightfold less cAMP and fivefold less cIMP, but similar concentrations of cGMP. The K(1/2) values for heteromultimers of the alpha subunit and a chimeric beta subunit with the alpha subunit cyclic nucleotide-binding region (CNBR) (alpha+beta-CNBRalpha channels) were restored to near the values for alpha channels. Furthermore, a single residue in the CNBR could account for the altered ligand selectivity. Mutation of the methionine residue at position 475 in the beta subunit to a glutamic acid as in the alpha subunit (beta-M475E) reverted the K(1/2,cAMP)/K(1/2,cGMP) and K(1/2, cIMP)/K(1/2,cGMP) ratios of alpha+beta-M475E channels to be very similar to those of alpha channels. In addition, comparison of alpha+beta-CNBRalpha channels with alpha+beta-M475E channels suggests that the CNBR of the beta subunit contains amino acid differences at positions other than 475 that produce an increase in the apparent affinity for each ligand. Like the wild-type beta subunit, the chimeric beta/alpha subunits conferred a shallow slope to the dose-response curves, increased voltage dependence, and caused desensitization. In addition, as for alpha+beta channels, block of alpha+betaCNBRalpha channels by internal Mg(2+) was not steeply voltage-dependent (zdelta approximately 1e(-)) as compared to block of alpha channels (zdelta 2.7e(-)). Thus, the ligand-independent effects localize outside of the CNBR. We propose a molecular model to explain how the beta subunit alters ligand selectivity of the heteromeric channels.

Full Text

The Full Text of this article is available as a PDF (395.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anholt R. R. Molecular neurobiology of olfaction. Crit Rev Neurobiol. 1993;7(1):1–22. [PubMed] [Google Scholar]
  2. Baylor D. A., Nunn B. Electrical signaling in vertebrate photoreceptors. Methods Enzymol. 1982;81:403–423. doi: 10.1016/s0076-6879(82)81058-6. [DOI] [PubMed] [Google Scholar]
  3. Berghard A., Buck L. B., Liman E. R. Evidence for distinct signaling mechanisms in two mammalian olfactory sense organs. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2365–2369. doi: 10.1073/pnas.93.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biel M., Zong X., Distler M., Bosse E., Klugbauer N., Murakami M., Flockerzi V., Hofmann F. Another member of the cyclic nucleotide-gated channel family, expressed in testis, kidney, and heart. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3505–3509. doi: 10.1073/pnas.91.9.3505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradley J., Li J., Davidson N., Lester H. A., Zinn K. Heteromeric olfactory cyclic nucleotide-gated channels: a subunit that confers increased sensitivity to cAMP. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8890–8894. doi: 10.1073/pnas.91.19.8890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bönigk W., Bradley J., Müller F., Sesti F., Boekhoff I., Ronnett G. V., Kaupp U. B., Frings S. The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J Neurosci. 1999 Jul 1;19(13):5332–5347. doi: 10.1523/JNEUROSCI.19-13-05332.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen T. Y., Peng Y. W., Dhallan R. S., Ahamed B., Reed R. R., Yau K. W. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature. 1993 Apr 22;362(6422):764–767. doi: 10.1038/362764a0. [DOI] [PubMed] [Google Scholar]
  8. Colamartino G., Menini A., Torre V. Blockage and permeation of divalent cations through the cyclic GMP-activated channel from tiger salamander retinal rods. J Physiol. 1991;440:189–206. doi: 10.1113/jphysiol.1991.sp018703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dhallan R. S., Yau K. W., Schrader K. A., Reed R. R. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature. 1990 Sep 13;347(6289):184–187. doi: 10.1038/347184a0. [DOI] [PubMed] [Google Scholar]
  10. Dryer S. E., Henderson D. Cyclic GMP-activated channels of the chick pineal gland: effects of divalent cations, pH, and cyclic AMP. J Comp Physiol A. 1993 Apr;172(3):271–279. doi: 10.1007/BF00216609. [DOI] [PubMed] [Google Scholar]
  11. Eismann E., Müller F., Heinemann S. H., Kaupp U. B. A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+ blockage, and ionic selectivity. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1109–1113. doi: 10.1073/pnas.91.3.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finn J. T., Grunwald M. E., Yau K. W. Cyclic nucleotide-gated ion channels: an extended family with diverse functions. Annu Rev Physiol. 1996;58:395–426. doi: 10.1146/annurev.ph.58.030196.002143. [DOI] [PubMed] [Google Scholar]
  13. Finn J. T., Krautwurst D., Schroeder J. E., Chen T. Y., Reed R. R., Yau K. W. Functional co-assembly among subunits of cyclic-nucleotide-activated, nonselective cation channels, and across species from nematode to human. Biophys J. 1998 Mar;74(3):1333–1345. doi: 10.1016/S0006-3495(98)77846-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frings S., Lynch J. W., Lindemann B. Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage. J Gen Physiol. 1992 Jul;100(1):45–67. doi: 10.1085/jgp.100.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frings S., Seifert R., Godde M., Kaupp U. B. Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron. 1995 Jul;15(1):169–179. doi: 10.1016/0896-6273(95)90074-8. [DOI] [PubMed] [Google Scholar]
  16. Gordon S. E., Oakley J. C., Varnum M. D., Zagotta W. N. Altered ligand specificity by protonation in the ligand binding domain of cyclic nucleotide-gated channels. Biochemistry. 1996 Apr 2;35(13):3994–4001. doi: 10.1021/bi952607b. [DOI] [PubMed] [Google Scholar]
  17. Gordon S. E., Zagotta W. N. A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors. Neuron. 1995 Jan;14(1):177–183. doi: 10.1016/0896-6273(95)90252-x. [DOI] [PubMed] [Google Scholar]
  18. Gordon S. E., Zagotta W. N. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron. 1995 Apr;14(4):857–864. doi: 10.1016/0896-6273(95)90229-5. [DOI] [PubMed] [Google Scholar]
  19. Goulding E. H., Tibbs G. R., Siegelbaum S. A. Molecular mechanism of cyclic-nucleotide-gated channel activation. Nature. 1994 Nov 24;372(6504):369–374. doi: 10.1038/372369a0. [DOI] [PubMed] [Google Scholar]
  20. Hille B., Schwarz W. Potassium channels as multi-ion single-file pores. J Gen Physiol. 1978 Oct;72(4):409–442. doi: 10.1085/jgp.72.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ildefonse M., Crouzy S., Bennett N. Gating of retinal rod cation channel by different nucleotides: comparative study of unitary currents. J Membr Biol. 1992 Oct;130(1):91–104. doi: 10.1007/BF00233741. [DOI] [PubMed] [Google Scholar]
  22. Jan L. Y., Jan Y. N. A superfamily of ion channels. Nature. 1990 Jun 21;345(6277):672–672. doi: 10.1038/345672a0. [DOI] [PubMed] [Google Scholar]
  23. Jan L. Y., Jan Y. N. Tracing the roots of ion channels. Cell. 1992 May 29;69(5):715–718. doi: 10.1016/0092-8674(92)90280-p. [DOI] [PubMed] [Google Scholar]
  24. Karpen J. W., Brown R. L., Stryer L., Baylor D. A. Interactions between divalent cations and the gating machinery of cyclic GMP-activated channels in salamander retinal rods. J Gen Physiol. 1993 Jan;101(1):1–25. doi: 10.1085/jgp.101.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kaupp U. B., Niidome T., Tanabe T., Terada S., Bönigk W., Stühmer W., Cook N. J., Kangawa K., Matsuo H., Hirose T. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature. 1989 Dec 14;342(6251):762–766. doi: 10.1038/342762a0. [DOI] [PubMed] [Google Scholar]
  26. Kleene S. J. The cyclic nucleotide-activated conductance in olfactory cilia: effects of cytoplasmic Mg2+ and Ca2+. J Membr Biol. 1993 Feb;131(3):237–243. doi: 10.1007/BF02260112. [DOI] [PubMed] [Google Scholar]
  27. Körschen H. G., Illing M., Seifert R., Sesti F., Williams A., Gotzes S., Colville C., Müller F., Dosé A., Godde M. A 240 kDa protein represents the complete beta subunit of the cyclic nucleotide-gated channel from rod photoreceptor. Neuron. 1995 Sep;15(3):627–636. doi: 10.1016/0896-6273(95)90151-5. [DOI] [PubMed] [Google Scholar]
  28. Liman E. R., Buck L. B. A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron. 1994 Sep;13(3):611–621. doi: 10.1016/0896-6273(94)90029-9. [DOI] [PubMed] [Google Scholar]
  29. Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
  30. Liu D. T., Tibbs G. R., Paoletti P., Siegelbaum S. A. Constraining ligand-binding site stoichiometry suggests that a cyclic nucleotide-gated channel is composed of two functional dimers. Neuron. 1998 Jul;21(1):235–248. doi: 10.1016/s0896-6273(00)80530-9. [DOI] [PubMed] [Google Scholar]
  31. Liu M., Chen T. Y., Ahamed B., Li J., Yau K. W. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science. 1994 Nov 25;266(5189):1348–1354. doi: 10.1126/science.266.5189.1348. [DOI] [PubMed] [Google Scholar]
  32. Ludwig J., Margalit T., Eismann E., Lancet D., Kaupp U. B. Primary structure of cAMP-gated channel from bovine olfactory epithelium. FEBS Lett. 1990 Sep 17;270(1-2):24–29. doi: 10.1016/0014-5793(90)81226-e. [DOI] [PubMed] [Google Scholar]
  33. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  34. McCoy D. E., Guggino S. E., Stanton B. A. The renal cGMP-gated cation channel: its molecular structure and physiological role. Kidney Int. 1995 Oct;48(4):1125–1133. doi: 10.1038/ki.1995.396. [DOI] [PubMed] [Google Scholar]
  35. Nakamura T., Gold G. H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. 1987 Jan 29-Feb 4Nature. 325(6103):442–444. doi: 10.1038/325442a0. [DOI] [PubMed] [Google Scholar]
  36. Rieke F., Schwartz E. A. A cGMP-gated current can control exocytosis at cone synapses. Neuron. 1994 Oct;13(4):863–873. doi: 10.1016/0896-6273(94)90252-6. [DOI] [PubMed] [Google Scholar]
  37. Root M. J., MacKinnon R. Identification of an external divalent cation-binding site in the pore of a cGMP-activated channel. Neuron. 1993 Sep;11(3):459–466. doi: 10.1016/0896-6273(93)90150-p. [DOI] [PubMed] [Google Scholar]
  38. Ruiz M. L., Karpen J. W. Single cyclic nucleotide-gated channels locked in different ligand-bound states. Nature. 1997 Sep 25;389(6649):389–392. doi: 10.1038/38744. [DOI] [PubMed] [Google Scholar]
  39. Sautter A., Zong X., Hofmann F., Biel M. An isoform of the rod photoreceptor cyclic nucleotide-gated channel beta subunit expressed in olfactory neurons. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4696–4701. doi: 10.1073/pnas.95.8.4696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sesti F., Eismann E., Kaupp U. B., Nizzari M., Torre V. The multi-ion nature of the cGMP-gated channel from vertebrate rods. J Physiol. 1995 Aug 15;487(1):17–36. doi: 10.1113/jphysiol.1995.sp020858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shapiro M. S., Zagotta W. N. Stoichiometry and arrangement of heteromeric olfactory cyclic nucleotide-gated ion channels. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14546–14551. doi: 10.1073/pnas.95.24.14546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Su Y., Dostmann W. R., Herberg F. W., Durick K., Xuong N. H., Ten Eyck L., Taylor S. S., Varughese K. I. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science. 1995 Aug 11;269(5225):807–813. doi: 10.1126/science.7638597. [DOI] [PubMed] [Google Scholar]
  43. Sunderman E. R., Zagotta W. N. Mechanism of allosteric modulation of rod cyclic nucleotide-gated channels. J Gen Physiol. 1999 May;113(5):601–620. doi: 10.1085/jgp.113.5.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sunderman E. R., Zagotta W. N. Sequence of events underlying the allosteric transition of rod cyclic nucleotide-gated channels. J Gen Physiol. 1999 May;113(5):621–640. doi: 10.1085/jgp.113.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tanaka J. C., Eccleston J. F., Furman R. E. Photoreceptor channel activation by nucleotide derivatives. Biochemistry. 1989 Apr 4;28(7):2776–2784. doi: 10.1021/bi00433a006. [DOI] [PubMed] [Google Scholar]
  46. Varnum M. D., Black K. D., Zagotta W. N. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron. 1995 Sep;15(3):619–625. doi: 10.1016/0896-6273(95)90150-7. [DOI] [PubMed] [Google Scholar]
  47. Varnum M. D., Zagotta W. N. Interdomain interactions underlying activation of cyclic nucleotide-gated channels. Science. 1997 Oct 3;278(5335):110–113. doi: 10.1126/science.278.5335.110. [DOI] [PubMed] [Google Scholar]
  48. Varnum M. D., Zagotta W. N. Subunit interactions in the activation of cyclic nucleotide-gated ion channels. Biophys J. 1996 Jun;70(6):2667–2679. doi: 10.1016/S0006-3495(96)79836-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weber I. T., Steitz T. A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution. J Mol Biol. 1987 Nov 20;198(2):311–326. doi: 10.1016/0022-2836(87)90315-9. [DOI] [PubMed] [Google Scholar]
  50. Weyand I., Godde M., Frings S., Weiner J., Müller F., Altenhofen W., Hatt H., Kaupp U. B. Cloning and functional expression of a cyclic-nucleotide-gated channel from mammalian sperm. Nature. 1994 Apr 28;368(6474):859–863. doi: 10.1038/368859a0. [DOI] [PubMed] [Google Scholar]
  51. Yau K. W., Baylor D. A. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci. 1989;12:289–327. doi: 10.1146/annurev.ne.12.030189.001445. [DOI] [PubMed] [Google Scholar]
  52. Zagotta W. N., Siegelbaum S. A. Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci. 1996;19:235–263. doi: 10.1146/annurev.ne.19.030196.001315. [DOI] [PubMed] [Google Scholar]
  53. Zimmerman A. L., Baylor D. A. Cation interactions within the cyclic GMP-activated channel of retinal rods from the tiger salamander. J Physiol. 1992 Apr;449:759–783. doi: 10.1113/jphysiol.1992.sp019112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zufall F., Firestein S. Divalent cations block the cyclic nucleotide-gated channel of olfactory receptor neurons. J Neurophysiol. 1993 May;69(5):1758–1768. doi: 10.1152/jn.1993.69.5.1758. [DOI] [PubMed] [Google Scholar]
  55. Zufall F., Firestein S., Shepherd G. M. Cyclic nucleotide-gated ion channels and sensory transduction in olfactory receptor neurons. Annu Rev Biophys Biomol Struct. 1994;23:577–607. doi: 10.1146/annurev.bb.23.060194.003045. [DOI] [PubMed] [Google Scholar]
  56. Zufall F., Shepherd G. M., Barnstable C. J. Cyclic nucleotide gated channels as regulators of CNS development and plasticity. Curr Opin Neurobiol. 1997 Jun;7(3):404–412. doi: 10.1016/s0959-4388(97)80070-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES