Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2426–2434. doi: 10.1016/S0006-3495(00)76786-5

Solvent drag across gramicidin channels demonstrated by microelectrodes.

P Pohl 1, S M Saparov 1
PMCID: PMC1300831  PMID: 10777738

Abstract

The competition of ion and water fluxes across gramicidin channels was assessed from the concentration distributions of both pore-impermeable and -permeable cations that were simultaneously measured by double-barreled microelectrodes in the immediate vicinity of a planar bilayer. Because water movement across the membrane led to accumulation of solutes on one side of the membrane and depletion on the other, the permeable cation was not only pushed by water across the channel (true solvent drag); it also flowed along its concentration gradient (pseudo-solvent drag). For the demonstration of true solvent drag, a difference between the bulk concentrations on the hypertonic and the hypotonic sides of the membrane was established. It was adjusted to get equal cation concentrations at both membrane/water interfaces. From the sodium and potassium fluxes measured along with membrane conductivity under these conditions, approximately five water molecules were found to be transported simultaneously with one ion through the channel. In diphytanoyl phosphatidylcholine membranes, a single-channel hydraulic permeability coefficient of 1.6 x 10(-14) cm(3) s(-1) was obtained.

Full Text

The Full Text of this article is available as a PDF (106.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys J. 1983 Feb;41(2):119–133. doi: 10.1016/S0006-3495(83)84414-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreoli T. E., Schafer J. A., Troutman S. L. Coupling of solute and solvent flows in porous lipid bilayer membranes. J Gen Physiol. 1971 Apr;57(4):479–493. doi: 10.1085/jgp.57.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antoneko Y. N., Bulychev A. A. Measurements of local pH changes near bilayer lipid membrane by means of a pH microelectrode and a protonophore-dependent membrane potential. Comparison of the methods. Biochim Biophys Acta. 1991 Nov 18;1070(1):279–282. doi: 10.1016/0005-2736(91)90176-9. [DOI] [PubMed] [Google Scholar]
  4. Antonenko Y. N., Denisov G. A., Pohl P. Weak acid transport across bilayer lipid membrane in the presence of buffers. Theoretical and experimental pH profiles in the unstirred layers. Biophys J. 1993 Jun;64(6):1701–1710. doi: 10.1016/S0006-3495(93)81542-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Antonenko Y. N., Pohl P., Denisov G. A. Permeation of ammonia across bilayer lipid membranes studied by ammonium ion selective microelectrodes. Biophys J. 1997 May;72(5):2187–2195. doi: 10.1016/S0006-3495(97)78862-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barry P. H., Diamond J. M. Effects of unstirred layers on membrane phenomena. Physiol Rev. 1984 Jul;64(3):763–872. doi: 10.1152/physrev.1984.64.3.763. [DOI] [PubMed] [Google Scholar]
  7. Busath D. D., Thulin C. D., Hendershot R. W., Phillips L. R., Maughan P., Cole C. D., Bingham N. C., Morrison S., Baird L. C., Hendershot R. J. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Biophys J. 1998 Dec;75(6):2830–2844. doi: 10.1016/S0006-3495(98)77726-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chiu S. W., Subramaniam S., Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II. Rates and mechanisms of water transport. Biophys J. 1999 Apr;76(4):1939–1950. doi: 10.1016/S0006-3495(99)77353-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dani J. A., Levitt D. G. Binding constants of Li+, K+, and Tl+ in the gramicidin channel determined from water permeability measurements. Biophys J. 1981 Aug;35(2):485–499. doi: 10.1016/S0006-3495(81)84804-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deamer D. W., Bramhall J. Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):167–188. doi: 10.1016/0009-3084(86)90069-1. [DOI] [PubMed] [Google Scholar]
  11. Fettiplace R., Haydon D. A. Water permeability of lipid membranes. Physiol Rev. 1980 Apr;60(2):510–550. doi: 10.1152/physrev.1980.60.2.510. [DOI] [PubMed] [Google Scholar]
  12. Finkelstein A., Andersen O. S. The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. J Membr Biol. 1981 Apr 30;59(3):155–171. doi: 10.1007/BF01875422. [DOI] [PubMed] [Google Scholar]
  13. Finkelstein A. Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol. 1976 Aug;68(2):127–135. doi: 10.1085/jgp.68.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ge M., Freed J. H. Electron-spin resonance study of aggregation of gramicidin in dipalmitoylphosphatidylcholine bilayers and hydrophobic mismatch. Biophys J. 1999 Jan;76(1 Pt 1):264–280. doi: 10.1016/S0006-3495(99)77195-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanai T., Haydon D. A. The permeability to water of bimolecular lipid membranes. J Theor Biol. 1966 Aug;11(3):370–382. doi: 10.1016/0022-5193(66)90099-3. [DOI] [PubMed] [Google Scholar]
  16. Jansen M., Blume A. A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. Biophys J. 1995 Mar;68(3):997–1008. doi: 10.1016/S0006-3495(95)80275-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kovbasnjuk O., Leader J. P., Weinstein A. M., Spring K. R. Water does not flow across the tight junctions of MDCK cell epithelium. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6526–6530. doi: 10.1073/pnas.95.11.6526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levitt D. G., Elias S. R., Hautman J. M. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Biochim Biophys Acta. 1978 Sep 22;512(2):436–451. doi: 10.1016/0005-2736(78)90266-3. [DOI] [PubMed] [Google Scholar]
  19. Nakahari T., Yoshida H., Imai Y. Transepithelial fluid shift generated by osmolarity gradients in unstimulated perfused rat submandibular glands. Exp Physiol. 1996 Sep;81(5):767–779. doi: 10.1113/expphysiol.1996.sp003975. [DOI] [PubMed] [Google Scholar]
  20. Neher E., Sandblom J., Eisenman G. Ionic selectivity, saturation, and block in gramicidin A channels. II. Saturation behavior of single channel conductances and evidence for the existence of multiple binding sites in the channel. J Membr Biol. 1978 Apr 26;40(2):97–116. doi: 10.1007/BF01871143. [DOI] [PubMed] [Google Scholar]
  21. Pappenheimer J. R., Dahl C. E., Karnovsky M. L., Maggio J. E. Intestinal absorption and excretion of octapeptides composed of D amino acids. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1942–1945. doi: 10.1073/pnas.91.5.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pedley T. J. Calculation of unstirred layer thickness in membrane transport experiments: a survey. Q Rev Biophys. 1983 May;16(2):115–150. doi: 10.1017/s0033583500005060. [DOI] [PubMed] [Google Scholar]
  23. Phillips J. E., Wong L. B., Yeates D. B. Bidirectional transepithelial water transport: measurement and governing mechanisms. Biophys J. 1999 Feb;76(2):869–877. doi: 10.1016/S0006-3495(99)77250-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pohl P., Antonenko Y. N., Rosenfeld E. Effect of ultrasound on the pH profiles in the unstirred layers near planar bilayer lipid membranes measured by microelectrodes. Biochim Biophys Acta. 1993 Oct 10;1152(1):155–160. doi: 10.1016/0005-2736(93)90242-r. [DOI] [PubMed] [Google Scholar]
  25. Pohl P., Saparov S. M., Antonenko Y. N. The effect of a transmembrane osmotic flux on the ion concentration distribution in the immediate membrane vicinity measured by microelectrodes. Biophys J. 1997 Apr;72(4):1711–1718. doi: 10.1016/S0006-3495(97)78817-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pohl P., Saparov S. M., Antonenko Y. N. The size of the unstirred layer as a function of the solute diffusion coefficient. Biophys J. 1998 Sep;75(3):1403–1409. doi: 10.1016/S0006-3495(98)74058-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rippe B., Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev. 1994 Jan;74(1):163–219. doi: 10.1152/physrev.1994.74.1.163. [DOI] [PubMed] [Google Scholar]
  28. Rosenberg P. A., Finkelstein A. Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes. J Gen Physiol. 1978 Sep;72(3):327–340. doi: 10.1085/jgp.72.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosenberg P. A., Finkelstein A. Water permeability of gramicidin A-treated lipid bilayer membranes. J Gen Physiol. 1978 Sep;72(3):341–350. doi: 10.1085/jgp.72.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rutledge J. C., Curry F. E., Blanche P., Krauss R. M. Solvent drag of LDL across mammalian endothelial barriers with increased permeability. Am J Physiol. 1995 May;268(5 Pt 2):H1982–H1991. doi: 10.1152/ajpheart.1995.268.5.H1982. [DOI] [PubMed] [Google Scholar]
  31. Tripathi S., Hladky S. B. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes. Biophys J. 1998 Jun;74(6):2912–2917. doi: 10.1016/S0006-3495(98)77998-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang K. W., Tripathi S., Hladky S. B. Ion binding constants for gramicidin A obtained from water permeability measurements. J Membr Biol. 1995 Feb;143(3):247–257. doi: 10.1007/BF00233453. [DOI] [PubMed] [Google Scholar]
  33. Wilson R. W., Wareing M., Green R. The role of active transport in potassium reabsorption in the proximal convoluted tubule of the anaesthetized rat. J Physiol. 1997 Apr 1;500(Pt 1):155–164. doi: 10.1113/jphysiol.1997.sp022006. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES