Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2435–2440. doi: 10.1016/S0006-3495(00)76787-7

Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration.

H Heerklotz 1, J Seelig 1
PMCID: PMC1300832  PMID: 10777739

Abstract

The membrane/water partition coefficients, K, of 15 electrically neutral (non-charged or zwitterionic) detergents were measured with phospholipid vesicles by using isothermal titration calorimetry, and were compared to the corresponding critical micellar concentrations, cmc. The detergents measured were oligo(ethylene oxide) alkyl ethers (C(m)EO(n) with m = 10/n = 3, 7 and m = 12/n = 3.8); alkylglucosides (octyl, decyl); alkylmaltosides (octyl, decyl, dodecyl); diheptanoylphosphatidylcholine; Tritons (X-100, X-114) and CHAPS. A linear relation between the free energies of partitioning into the membrane and micelle formation was found such that K. CMC approximately 1. The identity K. CMC = 1 was used to classify detergents with respect to their membrane disruption potency. "Strong" detergents are characterized by K. CMC < 1 and solubilize lipid membranes at detergent-to-lipid ratios X(b) < 1 (alkylmaltosides, tritons, heptaethylene glycol alkyl ethers). "Weak" detergents are characterized by K. CMC > 1 and accumulate in the membrane- to detergent-to-lipid ratios X(b) > 1 before the bilayer disintegrates (alkylglucosides, pentaethylene glycol dodecyl ether).

Full Text

The Full Text of this article is available as a PDF (77.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee P., Joo J. B., Buse J. T., Dawson G. Differential solubilization of lipids along with membrane proteins by different classes of detergents. Chem Phys Lipids. 1995 Aug 1;77(1):65–78. doi: 10.1016/0009-3084(95)02455-r. [DOI] [PubMed] [Google Scholar]
  2. Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
  3. De la Maza A., Parra J. L. Vesicle-micelle structural transition of phosphatidylcholine bilayers and Triton X-100. Biochem J. 1994 Nov 1;303(Pt 3):907–914. doi: 10.1042/bj3030907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gruner S. M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3665–3669. doi: 10.1073/pnas.82.11.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heerklotz H. H., Binder H., Epand R. M. A "release" protocol for isothermal titration calorimetry. Biophys J. 1999 May;76(5):2606–2613. doi: 10.1016/S0006-3495(99)77413-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heerklotz H., Binder H., Lantzsch G., Klose G. Membrane/water partition of oligo(ethylene oxide) dodecyl ethers and its relevance for solubilization. Biochim Biophys Acta. 1994 Dec 30;1196(2):114–122. doi: 10.1016/0005-2736(94)00222-3. [DOI] [PubMed] [Google Scholar]
  7. Helenius A., Sarvas M., Simons K. Asymmetric and symmetric membrane reconstitution by detergent elimination. Studies with Semliki-Forest-virus spike glycoprotein and penicillinase from the membrane of Bacillus licheniformis. Eur J Biochem. 1981 May;116(1):27–35. doi: 10.1111/j.1432-1033.1981.tb05296.x. [DOI] [PubMed] [Google Scholar]
  8. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  9. Keller M., Kerth A., Blume A. Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry. Biochim Biophys Acta. 1997 Jun 12;1326(2):178–192. doi: 10.1016/s0005-2736(97)00022-9. [DOI] [PubMed] [Google Scholar]
  10. Kragh-Hansen U., le Maire M., Møller J. V. The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J. 1998 Dec;75(6):2932–2946. doi: 10.1016/S0006-3495(98)77735-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lantzch G., Binder H., Heerklotz H., Wendling M., Klose G. Surface areas and packing constraints in POPC C (12)EO (n) membranes. A time-resolved fluorescence study. Biophys Chem. 1996 Feb 8;58(3):289–302. doi: 10.1016/0301-4622(95)00108-5. [DOI] [PubMed] [Google Scholar]
  12. Lasch J. Interaction of detergents with lipid vesicles. Biochim Biophys Acta. 1995 Jul 17;1241(2):269–292. doi: 10.1016/0304-4157(95)00010-o. [DOI] [PubMed] [Google Scholar]
  13. Lichtenberg D. Characterization of the solubilization of lipid bilayers by surfactants. Biochim Biophys Acta. 1985 Dec 19;821(3):470–478. doi: 10.1016/0005-2736(85)90052-5. [DOI] [PubMed] [Google Scholar]
  14. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  15. Opatowski E., Kozlov M. M., Lichtenberg D. Partitioning of octyl glucoside between octyl glucoside/phosphatidylcholine mixed aggregates and aqueous media as studied by isothermal titration calorimetry. Biophys J. 1997 Sep;73(3):1448–1457. doi: 10.1016/S0006-3495(97)78177-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paternostre M. T., Roux M., Rigaud J. L. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry. 1988 Apr 19;27(8):2668–2677. doi: 10.1021/bi00408a006. [DOI] [PubMed] [Google Scholar]
  17. Paternostre M., Meyer O., Grabielle-Madelmont C., Lesieur S., Ghanam M., Ollivon M. Partition coefficient of a surfactant between aggregates and solution: application to the micelle-vesicle transition of egg phosphatidylcholine and octyl beta-D-glucopyranoside. Biophys J. 1995 Dec;69(6):2476–2488. doi: 10.1016/S0006-3495(95)80118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sanders C. R., 2nd, Landis G. C. Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry. 1995 Mar 28;34(12):4030–4040. doi: 10.1021/bi00012a022. [DOI] [PubMed] [Google Scholar]
  19. Schroeder R. J., Ahmed S. N., Zhu Y., London E., Brown D. A. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem. 1998 Jan 9;273(2):1150–1157. doi: 10.1074/jbc.273.2.1150. [DOI] [PubMed] [Google Scholar]
  20. Solomon K. R., Mallory M. A., Finberg R. W. Determination of the non-ionic detergent insolubility and phosphoprotein associations of glycosylphosphatidylinositol-anchored proteins expressed on T cells. Biochem J. 1998 Sep 1;334(Pt 2):325–333. doi: 10.1042/bj3340325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ueno M. Partition behavior of a nonionic detergent, octyl glucoside, between membrane and water phases, and its effect on membrane permeability. Biochemistry. 1989 Jun 27;28(13):5631–5634. doi: 10.1021/bi00439a044. [DOI] [PubMed] [Google Scholar]
  22. Wenk M. R., Alt T., Seelig A., Seelig J. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Biophys J. 1997 Apr;72(4):1719–1731. doi: 10.1016/S0006-3495(97)78818-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wenk M. R., Seelig J. Interaction of octyl-beta-thioglucopyranoside with lipid membranes. Biophys J. 1997 Nov;73(5):2565–2574. doi: 10.1016/S0006-3495(97)78285-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. de la Maza A., Parra J. L. Solubilizing effects caused by the nonionic surfactant dodecylmaltoside in phosphatidylcholine liposomes. Biophys J. 1997 Apr;72(4):1668–1675. doi: 10.1016/S0006-3495(97)78812-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. de la Maza A., Parra J. L. Structural phase transitions involved in the interaction of phospholipid bilayers with octyl glucoside. Eur J Biochem. 1994 Dec 15;226(3):1029–1038. doi: 10.1111/j.1432-1033.1994.t01-1-01029.x. [DOI] [PubMed] [Google Scholar]
  26. le Maire M., Møller J. V., Champeil P. Binding of a nonionic detergent to membranes: flip-flop rate and location on the bilayer. Biochemistry. 1987 Jul 28;26(15):4803–4810. doi: 10.1021/bi00389a030. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES