Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2452–2458. doi: 10.1016/s0006-3495(00)76789-0

Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers.

M C Luzardo 1, F Amalfa 1, A M Nuñez 1, S Díaz 1, A C Biondi De Lopez 1, E A Disalvo 1
PMCID: PMC1300834  PMID: 10777741

Abstract

The water activity in dimyristoylphosphatidylcholine (DMPC) decreases by 60% when the lipid is dehydrated in the presence of trehalose concentrations higher than 0.02 M. In contrast, sucrose in concentrations 10 times higher produced only a 20% decrease in the water activity in the sample. Titrations of a DMPC solution in chloroform yielded 14 water molecules per lipid when pure water was added and seven water molecules per lipid when the titration was done with 0.025 M trehalose. The same concentrations of sucrose produced a turbid solution, which made it impossible to quantify the number of water molecules per lipid. Lipid monolayers spread on an air/water interface showed a decrease from 480 mV in pure water to 425 mV in 0.1 M trehalose. However, the same concentrations of sucrose produced an increase of less than 100 mV. Results obtained with Fourier transform infrared spectroscopy (FTIR) under the same conditions denoted that trehalose binds to the carbonyl groups, while sucrose showed no specific binding. It is concluded that per lipid molecule, 11 of 14 water molecules can be replaced by three trehalose molecules. About four are displaced by changes in the water activity of the bulk solution, and seven by specific interactions with the phospholipids. In this last case, at least two of them are linked to the carbonyls, and this appears to be the cause of the decrease in the dipole potential of the membrane. In contrast, four sucrose molecules displace only three water molecules per lipid, with no effect on the dipole potential or the carbonyl groups.

Full Text

The Full Text of this article is available as a PDF (69.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnett E. M., Harvey N., Johnson E. A., Johnston D. S., Chapman D. No phospholipid monolayer-sugar interactions. Biochemistry. 1986 Sep 9;25(18):5239–5242. doi: 10.1021/bi00366a038. [DOI] [PubMed] [Google Scholar]
  2. Arrondo J. L., Goñi F. M. Infrared studies of protein-induced perturbation of lipids in lipoproteins and membranes. Chem Phys Lipids. 1998 Nov;96(1-2):53–68. doi: 10.1016/s0009-3084(98)00080-2. [DOI] [PubMed] [Google Scholar]
  3. Bush S. F., Adams R. G., Levin I. W. Structural reorganizations in lipid bilayer systems: effect of hydration and sterol addition on Raman spectra of dipalmitoylphosphatidylcholine multilayers. Biochemistry. 1980 Sep 16;19(19):4429–4436. doi: 10.1021/bi00560a008. [DOI] [PubMed] [Google Scholar]
  4. Crowe J. H., Crowe L. M., Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984 Feb 17;223(4637):701–703. doi: 10.1126/science.223.4637.701. [DOI] [PubMed] [Google Scholar]
  5. Crowe J. H., Whittam M. A., Chapman D., Crowe L. M. Interactions of phospholipid monolayers with carbohydrates. Biochim Biophys Acta. 1984 Jan 11;769(1):151–159. doi: 10.1016/0005-2736(84)90018-x. [DOI] [PubMed] [Google Scholar]
  6. Crowe L. M., Crowe J. H., Rudolph A., Womersley C., Appel L. Preservation of freeze-dried liposomes by trehalose. Arch Biochem Biophys. 1985 Oct;242(1):240–247. doi: 10.1016/0003-9861(85)90498-9. [DOI] [PubMed] [Google Scholar]
  7. Crowe L. M., Crowe J. H. Solution effects on the thermotropic phase transition of unilamellar liposomes. Biochim Biophys Acta. 1991 May 7;1064(2):267–274. doi: 10.1016/0005-2736(91)90311-u. [DOI] [PubMed] [Google Scholar]
  8. Crowe L. M., Crowe J. H. Trehalose and dry dipalmitoylphosphatidylcholine revisited. Biochim Biophys Acta. 1988 Dec 22;946(2):193–201. doi: 10.1016/0005-2736(88)90392-6. [DOI] [PubMed] [Google Scholar]
  9. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jendrasiak G. L., Hasty J. H. The hydration of phospholipids. Biochim Biophys Acta. 1974 Jan 23;337(1):79–91. doi: 10.1016/0005-2760(74)90042-3. [DOI] [PubMed] [Google Scholar]
  11. Kawai H., Sakurai M., Inoue Y., Chûjô R., Kobayashi S. Hydration of oligosaccharides: anomalous hydration ability of trehalose. Cryobiology. 1992 Oct;29(5):599–606. doi: 10.1016/0011-2240(92)90064-9. [DOI] [PubMed] [Google Scholar]
  12. Korstanje L. J., van Faassen E. E., Levine Y. K. Reorientational dynamics in lipid vesicles and liposomes studied with ESR: effects of hydration, curvature and unsaturation. Biochim Biophys Acta. 1989 Jul 10;982(2):196–204. doi: 10.1016/0005-2736(89)90055-2. [DOI] [PubMed] [Google Scholar]
  13. Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Interactions between neutral phospholipid bilayer membranes. Biophys J. 1982 Mar;37(3):657–665. [PMC free article] [PubMed] [Google Scholar]
  14. MacDonald R. C., Simon S. A. Lipid monolayer states and their relationships to bilayers. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4089–4093. doi: 10.1073/pnas.84.12.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nagase H., Ueda H., Nakagaki M. Effect of water on lamellar structure of DPPC/sugar systems. Biochim Biophys Acta. 1997 Sep 4;1328(2):197–206. doi: 10.1016/s0005-2736(97)00088-6. [DOI] [PubMed] [Google Scholar]
  16. Nagase H., Ueda H., Nakagaki M. Temperature change of the lamellar structure of DPPC/disaccharide/water systems with low water content. Biochim Biophys Acta. 1998 May 28;1371(2):223–231. doi: 10.1016/s0005-2736(98)00016-9. [DOI] [PubMed] [Google Scholar]
  17. Nicklas K., Böcker J., Schlenkrich M., Brickmann J., Bopp P. Molecular dynamics studies of the interface between a model membrane and an aqueous solution. Biophys J. 1991 Jul;60(1):261–272. doi: 10.1016/S0006-3495(91)82048-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Simon S. A., McIntosh T. J. Magnitude of the solvation pressure depends on dipole potential. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9263–9267. doi: 10.1073/pnas.86.23.9263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Strauss G., Schurtenberger P., Hauser H. The interaction of saccharides with lipid bilayer vesicles: stabilization during freeze-thawing and freeze-drying. Biochim Biophys Acta. 1986 Jun 13;858(1):169–180. doi: 10.1016/0005-2736(86)90303-2. [DOI] [PubMed] [Google Scholar]
  20. Takahashi H., Ohmae H., Hatta I. Trehalose-induced destabilization of interdigitated gel phase in dihexadecylphosphatidylcholine. Biophys J. 1997 Dec;73(6):3030–3038. doi: 10.1016/S0006-3495(97)78331-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tsvetkova N., Tenchov B., Tsonev L., Tsvetkov T. Dependence of trehalose protective action on the initial phase state of dipalmitoylphosphatidylcholine bilayers. Cryobiology. 1988 Jun;25(3):256–263. doi: 10.1016/0011-2240(88)90033-8. [DOI] [PubMed] [Google Scholar]
  22. Viera L. I., Alonso-Romanowski S., Borovyagin V., Feliz M. R., Disalvo E. A. Properties of gel phase lipid-trehalose bilayers upon rehydration. Biochim Biophys Acta. 1993 Jan 18;1145(1):157–167. doi: 10.1016/0005-2736(93)90393-e. [DOI] [PubMed] [Google Scholar]
  23. White G., Pencer J., Nickel B. G., Wood J. M., Hallett F. R. Optical changes in unilamellar vesicles experiencing osmotic stress. Biophys J. 1996 Nov;71(5):2701–2715. doi: 10.1016/S0006-3495(96)79461-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wiener M. C., Suter R. M., Nagle J. F. Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys J. 1989 Feb;55(2):315–325. doi: 10.1016/S0006-3495(89)82807-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES