Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2459–2469. doi: 10.1016/S0006-3495(00)76790-7

Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle x-ray scattering.

J M Holopainen 1, J Lemmich 1, F Richter 1, O G Mouritsen 1, G Rapp 1, P K Kinnunen 1
PMCID: PMC1300835  PMID: 10777742

Abstract

Ceramide has recently been established as a central messenger in the signaling cascades controlling cell behavior. Physicochemical studies have revealed a strong tendency of this lipid toward phase separation in mixtures with phosphatidylcholines. The thermal phase behavior and structure of fully hydrated binary membranes composed of dimyristoylphosphatidylcholine (DMPC) and N-palmitoyl-ceramide (C16:0-ceramide, up to a mole fraction X(cer) = 0.35) were resolved in further detail by high-sensitivity differential scanning calorimetry (DSC) and x-ray diffraction. Both methods reveal very strong hysteresis in the thermal phase behavior of ceramide-containing membranes. A partial phase diagram was constructed based on results from a combination of these two methods. DSC heating scans show that with increased X(cer) the pretransition temperature T(p) first increases, whereafter at X(cer) > 0.06 it can no longer be resolved. The main transition enthalpy DeltaH remains practically unaltered while its width increases significantly, and the upper phase boundary temperature of the mixture shifts to approximately 63 degrees C at X(cer) = 0.30. Upon cooling, profound phase separation is evident, and for all of the studied compositions there is an endotherm in the region close to the T(m) for DMPC. At X(cer) >/= 0.03 a second endotherm is evident at higher temperatures, starting at 32.1 degrees C and reaching 54.6 degrees C at X(cer) = 0.30. X-ray small-angle reflection heating scans reveal a lamellar phase within the temperature range of 15-60 degrees C, regardless of composition. The pretransition is observed up to X(cer) < 0.18, together with an increase in T(p). In the gel phase the lamellar repeat distance d increases from approximately 61 A at X(cer) = 0. 03, to 67 A at X(cer) = 0.35. In the fluid phase increasing X(cer) from 0.06 to 0.35 augments d from 61 A to 64 A. An L(beta')/L(alpha) (ripple/fluid) phase coexistence region is observed at high temperatures (from 31 to 56.5 degrees C) when X(cer) > 0.03. With cooling from temperatures above 50 degrees C we observe a slow increase in d as the coexistence region is entered. A sudden solidification into a metastable, modulated gel phase with high d values is observed for all compositions at approximately 24 degrees C. The anomalous swelling for up to X(cer) = 0.30 in the transition region is interpreted as an indication of bilayer softening and thermally reduced bending rigidity.

Full Text

The Full Text of this article is available as a PDF (164.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar L. K., Barenholz Y., Thompson T. E. Effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers. Biochemistry. 1997 Mar 4;36(9):2507–2516. doi: 10.1021/bi9625004. [DOI] [PubMed] [Google Scholar]
  2. Basáez G., Ruiz-Argüello M. B., Alonso A., Goñi F. M., Karlsson G., Edwards K. Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. Biophys J. 1997 Jun;72(6):2630–2637. doi: 10.1016/S0006-3495(97)78906-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blume A., Wittebort R. J., Das Gupta S. K., Griffin R. G. Phase equilibria, molecular conformation, and dynamics in phosphatidylcholine/phosphatidylethanolamine bilayers. Biochemistry. 1982 Nov 23;21(24):6243–6253. doi: 10.1021/bi00267a032. [DOI] [PubMed] [Google Scholar]
  4. Buboltz J. T., Feigenson G. W. A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochim Biophys Acta. 1999 Mar 4;1417(2):232–245. doi: 10.1016/s0005-2736(99)00006-1. [DOI] [PubMed] [Google Scholar]
  5. Calhoun W. I., Shipley G. G. Sphingomyelin--lecithin bilayers and their interaction with cholesterol. Biochemistry. 1979 May 1;18(9):1717–1722. doi: 10.1021/bi00576a013. [DOI] [PubMed] [Google Scholar]
  6. Chao W., Olson M. S. Platelet-activating factor: receptors and signal transduction. Biochem J. 1993 Jun 15;292(Pt 3):617–629. doi: 10.1042/bj2920617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elias P. M., Menon G. K. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res. 1991;24:1–26. doi: 10.1016/b978-0-12-024924-4.50005-5. [DOI] [PubMed] [Google Scholar]
  8. Gómez-Muñoz A. Modulation of cell signalling by ceramides. Biochim Biophys Acta. 1998 Mar 6;1391(1):92–109. doi: 10.1016/s0005-2760(97)00201-4. [DOI] [PubMed] [Google Scholar]
  9. Han C. H., Sanftleben R., Wiedmann T. S. Phase properties of mixtures of ceramides. Lipids. 1995 Feb;30(2):121–128. doi: 10.1007/BF02538264. [DOI] [PubMed] [Google Scholar]
  10. Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
  11. Hannun Y. A., Obeid L. M. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci. 1995 Feb;20(2):73–77. doi: 10.1016/s0968-0004(00)88961-6. [DOI] [PubMed] [Google Scholar]
  12. Hannun Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994 Feb 4;269(5):3125–3128. [PubMed] [Google Scholar]
  13. Hinderliter A. K., Dibble A. R., Biltonen R. L., Sando J. J. Activation of protein kinase C by coexisting diacylglycerol-enriched and diacylglycerol-poor lipid domains. Biochemistry. 1997 May 20;36(20):6141–6148. doi: 10.1021/bi962715d. [DOI] [PubMed] [Google Scholar]
  14. Holopainen J. M., Angelova M. I., Kinnunen P. K. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J. 2000 Feb;78(2):830–838. doi: 10.1016/S0006-3495(00)76640-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holopainen J. M., Lehtonen J. Y., Kinnunen P. K. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids. 1997 Aug 8;88(1):1–13. doi: 10.1016/s0009-3084(97)00040-6. [DOI] [PubMed] [Google Scholar]
  16. Holopainen J. M., Subramanian M., Kinnunen P. K. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry. 1998 Dec 15;37(50):17562–17570. doi: 10.1021/bi980915e. [DOI] [PubMed] [Google Scholar]
  17. Honger T, Mortensen K, Ipsen JH, Lemmich J, Bauer R, Mouritsen OG. Anomalous swelling of multilamellar lipid bilayers in the transition region by renormalization of curvature elasticity. Phys Rev Lett. 1994 Jun 13;72(24):3911–3914. doi: 10.1103/PhysRevLett.72.3911. [DOI] [PubMed] [Google Scholar]
  18. Huang J., Buboltz J. T., Feigenson G. W. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim Biophys Acta. 1999 Feb 4;1417(1):89–100. doi: 10.1016/s0005-2736(98)00260-0. [DOI] [PubMed] [Google Scholar]
  19. Hønger T., Jørgensen K., Biltonen R. L., Mouritsen O. G. Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry. 1996 Jul 16;35(28):9003–9006. doi: 10.1021/bi960866a. [DOI] [PubMed] [Google Scholar]
  20. Ipsen J. H., Jørgensen K., Mouritsen O. G. Density fluctuations in saturated phospholipid bilayers increase as the acyl-chain length decreases. Biophys J. 1990 Nov;58(5):1099–1107. doi: 10.1016/S0006-3495(90)82452-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Izumi T., Shimizu T. Platelet-activating factor receptor: gene expression and signal transduction. Biochim Biophys Acta. 1995 Dec 7;1259(3):317–333. doi: 10.1016/0005-2760(95)00171-9. [DOI] [PubMed] [Google Scholar]
  22. Kinnunen P. K. On the principles of functional ordering in biological membranes. Chem Phys Lipids. 1991 Mar;57(2-3):375–399. doi: 10.1016/0009-3084(91)90087-r. [DOI] [PubMed] [Google Scholar]
  23. Lehtonen J. Y., Holopainen J. M., Kinnunen P. K. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids. Biophys J. 1996 Apr;70(4):1753–1760. doi: 10.1016/S0006-3495(96)79738-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liu P., Anderson R. G. Compartmentalized production of ceramide at the cell surface. J Biol Chem. 1995 Nov 10;270(45):27179–27185. doi: 10.1074/jbc.270.45.27179. [DOI] [PubMed] [Google Scholar]
  25. McElhaney R. N. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem Phys Lipids. 1982 May;30(2-3):229–259. doi: 10.1016/0009-3084(82)90053-6. [DOI] [PubMed] [Google Scholar]
  26. McKeone B. J., Pownall H. J., Massey J. B. Ether phosphatidylcholines: comparison of miscibility with ester phosphatidylcholines and sphingomyelin, vesicle fusion, and association with apolipoprotein A-I. Biochemistry. 1986 Nov 18;25(23):7711–7716. doi: 10.1021/bi00371a064. [DOI] [PubMed] [Google Scholar]
  27. Mustonen P., Virtanen J. A., Somerharju P. J., Kinnunen P. K. Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Biochemistry. 1987 Jun 2;26(11):2991–2997. doi: 10.1021/bi00385a006. [DOI] [PubMed] [Google Scholar]
  28. Pascher I. Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta. 1976 Dec 2;455(2):433–451. doi: 10.1016/0005-2736(76)90316-3. [DOI] [PubMed] [Google Scholar]
  29. Ruiz-Argüello M. B., Basáez G., Goñi F. M., Alonso A. Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem. 1996 Oct 25;271(43):26616–26621. doi: 10.1074/jbc.271.43.26616. [DOI] [PubMed] [Google Scholar]
  30. Shah J., Atienza J. M., Duclos R. I., Jr, Rawlings A. V., Dong Z., Shipley G. G. Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration. J Lipid Res. 1995 Sep;36(9):1936–1944. [PubMed] [Google Scholar]
  31. Shah J., Atienza J. M., Rawlings A. V., Shipley G. G. Physical properties of ceramides: effect of fatty acid hydroxylation. J Lipid Res. 1995 Sep;36(9):1945–1955. [PubMed] [Google Scholar]
  32. Smart E. J., Graf G. A., McNiven M. A., Sessa W. C., Engelman J. A., Scherer P. E., Okamoto T., Lisanti M. P. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol. 1999 Nov;19(11):7289–7304. doi: 10.1128/mcb.19.11.7289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thomas R. L., Jr, Matsko C. M., Lotze M. T., Amoscato A. A. Mass spectrometric identification of increased C16 ceramide levels during apoptosis. J Biol Chem. 1999 Oct 22;274(43):30580–30588. doi: 10.1074/jbc.274.43.30580. [DOI] [PubMed] [Google Scholar]
  34. Thompson T. E., Allietta M., Brown R. E., Johnson M. L., Tillack T. W. Organization of ganglioside GM1 in phosphatidylcholine bilayers. Biochim Biophys Acta. 1985 Jul 25;817(2):229–237. doi: 10.1016/0005-2736(85)90024-0. [DOI] [PubMed] [Google Scholar]
  35. Weis R. M. Fluorescence microscopy of phospholipid monolayer phase transitions. Chem Phys Lipids. 1991 Mar;57(2-3):227–239. doi: 10.1016/0009-3084(91)90078-p. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES