Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2543–2559. doi: 10.1016/S0006-3495(00)76799-3

Structural changes induced by binding of the high-mobility group I protein to a mouse satellite DNA sequence.

A Slama-Schwok 1, K Zakrzewska 1, G Léger 1, Y Leroux 1, M Takahashi 1, E Käs 1, P Debey 1
PMCID: PMC1300844  PMID: 10777751

Abstract

Using spectroscopic methods, we have studied the structural changes induced in both protein and DNA upon binding of the High-Mobility Group I (HMG-I) protein to a 21-bp sequence derived from mouse satellite DNA. We show that these structural changes depend on the stoichiometry of the protein/DNA complexes formed, as determined by Job plots derived from experiments using pyrene-labeled duplexes. Circular dichroism and melting temperature experiments extended in the far ultraviolet range show that while native HMG-I is mainly random coiled in solution, it adopts a beta-turn conformation upon forming a 1:1 complex in which the protein first binds to one of two dA.dT stretches present in the duplex. HMG-I structure in the 1:1 complex is dependent on the sequence of its DNA target. A 3:1 HMG-I/DNA complex can also form and is characterized by a small increase in the DNA natural bend and/or compaction coupled to a change in the protein conformation, as determined from fluorescence resonance energy transfer (FRET) experiments. In addition, a peptide corresponding to an extended DNA-binding domain of HMG-I induces an ordered condensation of DNA duplexes. Based on the constraints derived from pyrene excimer measurements, we present a model of these nucleated structures. Our results illustrate an extreme case of protein structure induced by DNA conformation that may bear on the evolutionary conservation of the DNA-binding motifs of HMG-I. We discuss the functional relevance of the structural flexibility of HMG-I associated with the nature of its DNA targets and the implications of the binding stoichiometry for several aspects of chromatin structure and gene regulation.

Full Text

The Full Text of this article is available as a PDF (916.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amirand C., Viari A., Ballini J. P., Rezaei H., Beaujean N., Jullien D., Käs E., Debey P. Three distinct sub-nuclear populations of HMG-I protein of different properties revealed by co-localization image analysis. J Cell Sci. 1998 Dec;111(Pt 23):3551–3561. doi: 10.1242/jcs.111.23.3551. [DOI] [PubMed] [Google Scholar]
  2. Aravind L., Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 1998 Oct 1;26(19):4413–4421. doi: 10.1093/nar/26.19.4413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailly F., Bailly C., Colson P., Houssier C., Hénichart J. P. A tandem repeat of the SPKK peptide motif induces psi-type DNA structures at alternating AT sequences. FEBS Lett. 1993 Jun 14;324(2):181–184. doi: 10.1016/0014-5793(93)81389-h. [DOI] [PubMed] [Google Scholar]
  4. Bandiera A., Bonifacio D., Manfioletti G., Mantovani F., Rustighi A., Zanconati F., Fusco A., Di Bonito L., Giancotti V. Expression of HMGI(Y) proteins in squamous intraepithelial and invasive lesions of the uterine cervix. Cancer Res. 1998 Feb 1;58(3):426–431. [PubMed] [Google Scholar]
  5. Bewley C. A., Gronenborn A. M., Clore G. M. Minor groove-binding architectural proteins: structure, function, and DNA recognition. Annu Rev Biophys Biomol Struct. 1998;27:105–131. doi: 10.1146/annurev.biophys.27.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bianchi M. E., Beltrame M., Paonessa G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science. 1989 Feb 24;243(4894 Pt 1):1056–1059. doi: 10.1126/science.2922595. [DOI] [PubMed] [Google Scholar]
  7. Bonnefoy E., Bandu M. T., Doly J. Specific binding of high-mobility-group I (HMGI) protein and histone H1 to the upstream AT-rich region of the murine beta interferon promoter: HMGI protein acts as a potential antirepressor of the promoter. Mol Cell Biol. 1999 Apr;19(4):2803–2816. doi: 10.1128/mcb.19.4.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bustin M., Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol. 1996;54:35–100. doi: 10.1016/s0079-6603(08)60360-8. [DOI] [PubMed] [Google Scholar]
  9. Carrera P., Martínez-Balbás M. A., Portugal J., Azorín F. Identification of sequence elements contributing to the intrinsic curvature of the mouse satellite DNA repeat. Nucleic Acids Res. 1991 Oct 25;19(20):5639–5644. doi: 10.1093/nar/19.20.5639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chase M. B., Haga S. B., Hankins W. D., Williams D. M., Bi Z., Strovel J. W., Obriecht C., Berg P. E. Binding of HMG-I(Y) elicits structural changes in a silencer of the human beta-globin gene. Am J Hematol. 1999 Jan;60(1):27–35. doi: 10.1002/(sici)1096-8652(199901)60:1<27::aid-ajh6>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  11. Chiappetta G., Avantaggiato V., Visconti R., Fedele M., Battista S., Trapasso F., Merciai B. M., Fidanza V., Giancotti V., Santoro M. High level expression of the HMGI (Y) gene during embryonic development. Oncogene. 1996 Dec 5;13(11):2439–2446. [PubMed] [Google Scholar]
  12. Clegg R. M., Murchie A. I., Zechel A., Lilley D. M. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2994–2998. doi: 10.1073/pnas.90.7.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Du W., Thanos D., Maniatis T. Mechanisms of transcriptional synergism between distinct virus-inducible enhancer elements. Cell. 1993 Sep 10;74(5):887–898. doi: 10.1016/0092-8674(93)90468-6. [DOI] [PubMed] [Google Scholar]
  14. Ebata K., Masuko M., Ohtani H., Kashiwasake-Jibu M. Nucleic acid hybridization accompanied with excimer formation from two pyrene-labeled probes. Photochem Photobiol. 1995 Nov;62(5):836–839. doi: 10.1111/j.1751-1097.1995.tb09144.x. [DOI] [PubMed] [Google Scholar]
  15. Eis P. S., Millar D. P. Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer. Biochemistry. 1993 Dec 21;32(50):13852–13860. doi: 10.1021/bi00213a014. [DOI] [PubMed] [Google Scholar]
  16. Erard M., Lakhdar-Ghazal F., Amalric F. Repeat peptide motifs which contain beta-turns and modulate DNA condensation in chromatin. Eur J Biochem. 1990 Jul 20;191(1):19–26. doi: 10.1111/j.1432-1033.1990.tb19088.x. [DOI] [PubMed] [Google Scholar]
  17. Evans J. N., Zajicek J., Nissen M. S., Munske G., Smith V., Reeves R. 1H and 13C NMR assignments and molecular modelling of a minor groove DNA-binding peptide from the HMG-I protein. Int J Pept Protein Res. 1995 Jun;45(6):554–560. doi: 10.1111/j.1399-3011.1995.tb01319.x. [DOI] [PubMed] [Google Scholar]
  18. Falvo J. V., Thanos D., Maniatis T. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell. 1995 Dec 29;83(7):1101–1111. doi: 10.1016/0092-8674(95)90137-x. [DOI] [PubMed] [Google Scholar]
  19. Farnet C. M., Bushman F. D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell. 1997 Feb 21;88(4):483–492. doi: 10.1016/s0092-8674(00)81888-7. [DOI] [PubMed] [Google Scholar]
  20. Frank O., Schwanbeck R., Wiśniewski J. R. Protein footprinting reveals specific binding modes of a high mobility group protein I to DNAs of different conformation. J Biol Chem. 1998 Aug 7;273(32):20015–20020. doi: 10.1074/jbc.273.32.20015. [DOI] [PubMed] [Google Scholar]
  21. French S. W., Schmidt M. C., Glorioso J. C. Involvement of a high-mobility-group protein in the transcriptional activity of herpes simplex virus latency-active promoter 2. Mol Cell Biol. 1996 Oct;16(10):5393–5399. doi: 10.1128/mcb.16.10.5393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Geierstanger B. H., Volkman B. F., Kremer W., Wemmer D. E. Short peptide fragments derived from HMG-I/Y proteins bind specifically to the minor groove of DNA. Biochemistry. 1994 May 3;33(17):5347–5355. doi: 10.1021/bi00183a043. [DOI] [PubMed] [Google Scholar]
  23. Girard F., Bello B., Laemmli U. K., Gehring W. J. In vivo analysis of scaffold-associated regions in Drosophila: a synthetic high-affinity SAR binding protein suppresses position effect variegation. EMBO J. 1998 Apr 1;17(7):2079–2085. doi: 10.1093/emboj/17.7.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gohlke C., Murchie A. I., Lilley D. M., Clegg R. M. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11660–11664. doi: 10.1073/pnas.91.24.11660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gosule L. C., Schellman J. A. DNA condensation with polyamines I. Spectroscopic studies. J Mol Biol. 1978 May 25;121(3):311–326. doi: 10.1016/0022-2836(78)90366-2. [DOI] [PubMed] [Google Scholar]
  26. Grosschedl R., Giese K., Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 1994 Mar;10(3):94–100. doi: 10.1016/0168-9525(94)90232-1. [DOI] [PubMed] [Google Scholar]
  27. Heyduk E., Heyduk T., Claus P., Wiśniewski J. R. Conformational changes of DNA induced by binding of Chironomus high mobility group protein 1a (cHMG1a). Regions flanking an HMG1 box domain do not influence the bend angle of the DNA. J Biol Chem. 1997 Aug 8;272(32):19763–19770. doi: 10.1074/jbc.272.32.19763. [DOI] [PubMed] [Google Scholar]
  28. Hill D. A., Reeves R. Competition between HMG-I(Y), HMG-1 and histone H1 on four-way junction DNA. Nucleic Acids Res. 1997 Sep 1;25(17):3523–3531. doi: 10.1093/nar/25.17.3523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Holth L. T., Thorlacius A. E., Reeves R. Effects of epidermal growth factor and estrogen on the regulation of the HMG-I/Y gene in human mammary epithelial cell lines. DNA Cell Biol. 1997 Nov;16(11):1299–1309. doi: 10.1089/dna.1997.16.1299. [DOI] [PubMed] [Google Scholar]
  30. Huth J. R., Bewley C. A., Nissen M. S., Evans J. N., Reeves R., Gronenborn A. M., Clore G. M. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol. 1997 Aug;4(8):657–665. doi: 10.1038/nsb0897-657. [DOI] [PubMed] [Google Scholar]
  31. Jares-Erijman E. A., Jovin T. M. Determination of DNA helical handedness by fluorescence resonance energy transfer. J Mol Biol. 1996 Apr 5;257(3):597–617. doi: 10.1006/jmbi.1996.0188. [DOI] [PubMed] [Google Scholar]
  32. John S., Reeves R. B., Lin J. X., Child R., Leiden J. M., Thompson C. B., Leonard W. J. Regulation of cell-type-specific interleukin-2 receptor alpha-chain gene expression: potential role of physical interactions between Elf-1, HMG-I(Y), and NF-kappa B family proteins. Mol Cell Biol. 1995 Mar;15(3):1786–1796. doi: 10.1128/mcb.15.3.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. John S., Robbins C. M., Leonard W. J. An IL-2 response element in the human IL-2 receptor alpha chain promoter is a composite element that binds Stat5, Elf-1, HMG-I(Y) and a GATA family protein. EMBO J. 1996 Oct 15;15(20):5627–5635. [PMC free article] [PubMed] [Google Scholar]
  34. Kentsis A., Sosnick T. R. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding. Biochemistry. 1998 Oct 13;37(41):14613–14622. doi: 10.1021/bi981641y. [DOI] [PubMed] [Google Scholar]
  35. Khadake J. R., Rao M. R. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1. Biochemistry. 1997 Feb 4;36(5):1041–1051. doi: 10.1021/bi961617p. [DOI] [PubMed] [Google Scholar]
  36. Kinoshita T., Shirasawa H., Shino Y., Shimizu K., Moriya H., Simizu B. Human papillomavirus type 16 E6 protein up-regulates the expression of the high mobility group protein HMG-I(Y) gene in mouse 10T1/2 cells. Virus Res. 1996 Jun;42(1-2):119–125. doi: 10.1016/0168-1702(96)01303-2. [DOI] [PubMed] [Google Scholar]
  37. Klein-Hessling S., Schneider G., Heinfling A., Chuvpilo S., Serfling E. HMG I(Y) interferes with the DNA binding of NF-AT factors and the induction of the interleukin 4 promoter in T cells. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15311–15316. doi: 10.1073/pnas.93.26.15311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Koenig P., Reines S. A., Cantor C. R. Pyrene derivatives as fluorescent probes of conformation near the 3' termini of polyribonucleotides. Biopolymers. 1977 Oct;16(10):2231–2242. doi: 10.1002/bip.1977.360161011. [DOI] [PubMed] [Google Scholar]
  39. Lavery R., Sklenar H. Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn. 1989 Feb;6(4):655–667. doi: 10.1080/07391102.1989.10507728. [DOI] [PubMed] [Google Scholar]
  40. Leger H., Sock E., Renner K., Grummt F., Wegner M. Functional interaction between the POU domain protein Tst-1/Oct-6 and the high-mobility-group protein HMG-I/Y. Mol Cell Biol. 1995 Jul;15(7):3738–3747. doi: 10.1128/mcb.15.7.3738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lehn D. A., Elton T. S., Johnson K. R., Reeves R. A conformational study of the sequence specific binding of HMG-I (Y) with the bovine interleukin-2 cDNA. Biochem Int. 1988 May;16(5):963–971. [PubMed] [Google Scholar]
  42. Li L., Farnet C. M., Anderson W. F., Bushman F. D. Modulation of activity of Moloney murine leukemia virus preintegration complexes by host factors in vitro. J Virol. 1998 Mar;72(3):2125–2131. doi: 10.1128/jvi.72.3.2125-2131.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Linxweller W., Hörz W. Reconstitution experiments show that sequence-specific histone-DNA interactions are the basis for nucleosome phasing on mouse satellite DNA. Cell. 1985 Aug;42(1):281–290. doi: 10.1016/s0092-8674(85)80123-9. [DOI] [PubMed] [Google Scholar]
  44. Loontiens F. G., Regenfuss P., Zechel A., Dumortier L., Clegg R. M. Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)], and d(CCGGAATTCCGG): multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities. Biochemistry. 1990 Sep 25;29(38):9029–9039. doi: 10.1021/bi00490a021. [DOI] [PubMed] [Google Scholar]
  45. Maestre M. F., Reich C. Contribution of light scattering to the circular dichroism of deoxyribonucleic acid films, deoxyribonucleic acid-polylysine complexes, and deoxyribonucleic acid particles in ethanolic buffers. Biochemistry. 1980 Nov 11;19(23):5214–5223. doi: 10.1021/bi00564a010. [DOI] [PubMed] [Google Scholar]
  46. Maher J. F., Nathans D. Multivalent DNA-binding properties of the HMG-1 proteins. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6716–6720. doi: 10.1073/pnas.93.13.6716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mantovani F., Covaceuszach S., Rustighi A., Sgarra R., Heath C., Goodwin G. H., Manfioletti G. NF-kappaB mediated transcriptional activation is enhanced by the architectural factor HMGI-C. Nucleic Acids Res. 1998 Mar 15;26(6):1433–1439. doi: 10.1093/nar/26.6.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Martínez-Balbás A., Rodríguez-Campos A., García-Ramírez M., Sainz J., Carrera P., Aymamí J., Azorín F. Satellite DNAs contain sequences that induced curvature. Biochemistry. 1990 Mar 6;29(9):2342–2348. doi: 10.1021/bi00461a019. [DOI] [PubMed] [Google Scholar]
  49. Mergny J. L., Slama-Schwok A., Montenay-Garestier T., Rougée M., Hélène C. Fluorescence energy transfer between dimethyldiazaperopyrenium dication and ethidium intercalated in poly d(A-T). Photochem Photobiol. 1991 Apr;53(4):555–558. doi: 10.1111/j.1751-1097.1991.tb03670.x. [DOI] [PubMed] [Google Scholar]
  50. Mohammadi S., Slama-Schwok A., Léger G., el Manouni D., Shchyolkina A., Leroux Y., Taillandier E. Triple helix formation and homologous strand exchange in pyrene-labeled oligonucleotides. Biochemistry. 1997 Dec 2;36(48):14836–14844. doi: 10.1021/bi971710t. [DOI] [PubMed] [Google Scholar]
  51. Nissen M. S., Reeves R. Changes in superhelicity are introduced into closed circular DNA by binding of high mobility group protein I/Y. J Biol Chem. 1995 Mar 3;270(9):4355–4360. doi: 10.1074/jbc.270.9.4355. [DOI] [PubMed] [Google Scholar]
  52. Panagiotidis C. A., Artandi S., Calame K., Silverstein S. J. Polyamines alter sequence-specific DNA-protein interactions. Nucleic Acids Res. 1995 May 25;23(10):1800–1809. doi: 10.1093/nar/23.10.1800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Radic M. Z., Lundgren K., Hamkalo B. A. Curvature of mouse satellite DNA and condensation of heterochromatin. Cell. 1987 Sep 25;50(7):1101–1108. doi: 10.1016/0092-8674(87)90176-0. [DOI] [PubMed] [Google Scholar]
  54. Radic M. Z., Saghbini M., Elton T. S., Reeves R., Hamkalo B. A. Hoechst 33258, distamycin A, and high mobility group protein I (HMG-I) compete for binding to mouse satellite DNA. Chromosoma. 1992 Oct;101(10):602–608. doi: 10.1007/BF00360537. [DOI] [PubMed] [Google Scholar]
  55. Reeves R., Nissen M. S. The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem. 1990 May 25;265(15):8573–8582. [PubMed] [Google Scholar]
  56. Reeves R., Wolffe A. P. Substrate structure influences binding of the non-histone protein HMG-I(Y) to free nucleosomal DNA. Biochemistry. 1996 Apr 16;35(15):5063–5074. doi: 10.1021/bi952424p. [DOI] [PubMed] [Google Scholar]
  57. Rippe K., Fritsch V., Westhof E., Jovin T. M. Alternating d(G-A) sequences form a parallel-stranded DNA homoduplex. EMBO J. 1992 Oct;11(10):3777–3786. doi: 10.1002/j.1460-2075.1992.tb05463.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Solomon M. J., Strauss F., Varshavsky A. A mammalian high mobility group protein recognizes any stretch of six A.T base pairs in duplex DNA. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276–1280. doi: 10.1073/pnas.83.5.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Spolar R. S., Record M. T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994 Feb 11;263(5148):777–784. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  60. Strauss F., Varshavsky A. A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell. 1984 Jul;37(3):889–901. doi: 10.1016/0092-8674(84)90424-0. [DOI] [PubMed] [Google Scholar]
  61. Strick R., Laemmli U. K. SARs are cis DNA elements of chromosome dynamics: synthesis of a SAR repressor protein. Cell. 1995 Dec 29;83(7):1137–1148. doi: 10.1016/0092-8674(95)90140-x. [DOI] [PubMed] [Google Scholar]
  62. Stros M. DNA bending by the chromosomal protein HMG1 and its high mobility group box domains. Effect of flanking sequences. J Biol Chem. 1998 Apr 24;273(17):10355–10361. [PubMed] [Google Scholar]
  63. Tan R., Frankel A. D. Structural variety of arginine-rich RNA-binding peptides. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5282–5286. doi: 10.1073/pnas.92.12.5282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Thanos D., Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell. 1995 Dec 29;83(7):1091–1100. doi: 10.1016/0092-8674(95)90136-1. [DOI] [PubMed] [Google Scholar]
  65. Tóth K., Sauermann V., Langowski J. DNA curvature in solution measured by fluorescence resonance energy transfer. Biochemistry. 1998 Jun 2;37(22):8173–8179. doi: 10.1021/bi973135z. [DOI] [PubMed] [Google Scholar]
  66. Wilmot C. M., Thornton J. M. Beta-turns and their distortions: a proposed new nomenclature. Protein Eng. 1990 May;3(6):479–493. doi: 10.1093/protein/3.6.479. [DOI] [PubMed] [Google Scholar]
  67. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
  68. Yie J., Liang S., Merika M., Thanos D. Intra- and intermolecular cooperative binding of high-mobility-group protein I(Y) to the beta-interferon promoter. Mol Cell Biol. 1997 Jul;17(7):3649–3662. doi: 10.1128/mcb.17.7.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Yie J., Merika M., Munshi N., Chen G., Thanos D. The role of HMG I(Y) in the assembly and function of the IFN-beta enhanceosome. EMBO J. 1999 Jun 1;18(11):3074–3089. doi: 10.1093/emboj/18.11.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Zhao K., Käs E., Gonzalez E., Laemmli U. K. SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin. EMBO J. 1993 Aug;12(8):3237–3247. doi: 10.1002/j.1460-2075.1993.tb05993.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES