Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2560–2571. doi: 10.1016/S0006-3495(00)76800-7

Sequence-dependent dynamics in duplex DNA.

T M Okonogi 1, S C Alley 1, A W Reese 1, P B Hopkins 1, B H Robinson 1
PMCID: PMC1300845  PMID: 10777752

Abstract

The submicrosecond bending dynamics of duplex DNA were measured at a single site, using a site-specific electron paramagnetic resonance active spin probe. The observed dynamics are interpreted in terms of the mean squared amplitude of bending relative to the end-to-end vector defined by the weakly bending rod model. The bending dynamics monitored at the single site varied when the length and position of a repeated AT sequence, distant from the spin probe, were changed. As the distance between the probe and the AT sequence was increased, the mean squared amplitude of bending seen by the probe due to that sequence decreased. A model for the sequence-dependent internal flexural motion of duplex DNA, which casts the mean squared bending amplitudes in terms of sequence-dependent bending parameters, has been developed. The best fit of the data to the model occurs when the (AT)(n) basepairs are assumed to be 20% more flexible than the average of the basepairs within the control sequence. These findings provide a quantitative basis for interpreting the kinetics of biological processes that depend on duplex DNA flexibility, such as protein recognition and chromatin packaging.

Full Text

The Full Text of this article is available as a PDF (145.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison S. A., Shibata J. H., Wilcoxon J., Schurr J. M. NMR relaxation in DNA. I. The contribution of torsional deformation modes of the elastic filament. Biopolymers. 1982 Apr;21(4):729–762. doi: 10.1002/bip.360210403. [DOI] [PubMed] [Google Scholar]
  2. Chédin F., Dervyn E., Dervyn R., Ehrlich S. D., Noirot P. Frequency of deletion formation decreases exponentially with distance between short direct repeats. Mol Microbiol. 1994 May;12(4):561–569. doi: 10.1111/j.1365-2958.1994.tb01042.x. [DOI] [PubMed] [Google Scholar]
  3. Dlakic M., Harrington R. E. Bending and torsional flexibility of G/C-rich sequences as determined by cyclization assays. J Biol Chem. 1995 Dec 15;270(50):29945–29952. doi: 10.1074/jbc.270.50.29945. [DOI] [PubMed] [Google Scholar]
  4. Drew H. R., Travers A. A. DNA bending and its relation to nucleosome positioning. J Mol Biol. 1985 Dec 20;186(4):773–790. doi: 10.1016/0022-2836(85)90396-1. [DOI] [PubMed] [Google Scholar]
  5. Fujimoto B. S., Schurr J. M. Dependence of the torsional rigidity of DNA on base composition. Nature. 1990 Mar 8;344(6262):175–177. doi: 10.1038/344175a0. [DOI] [PubMed] [Google Scholar]
  6. Grove A., Galeone A., Mayol L., Geiduschek E. P. Localized DNA flexibility contributes to target site selection by DNA-bending proteins. J Mol Biol. 1996 Jul 12;260(2):120–125. doi: 10.1006/jmbi.1996.0386. [DOI] [PubMed] [Google Scholar]
  7. Grove A., Galeone A., Mayol L., Geiduschek E. P. On the connection between inherent DNA flexure and preferred binding of hydroxymethyluracil-containing DNA by the type II DNA-binding protein TF1. J Mol Biol. 1996 Jul 12;260(2):196–206. doi: 10.1006/jmbi.1996.0392. [DOI] [PubMed] [Google Scholar]
  8. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  9. Hagerman P. J. Sequence-directed curvature of DNA. Annu Rev Biochem. 1990;59:755–781. doi: 10.1146/annurev.bi.59.070190.003543. [DOI] [PubMed] [Google Scholar]
  10. Harrington R. E., Winicov I. New concepts in protein-DNA recognition: sequence-directed DNA bending and flexibility. Prog Nucleic Acid Res Mol Biol. 1994;47:195–270. doi: 10.1016/s0079-6603(08)60253-6. [DOI] [PubMed] [Google Scholar]
  11. Hogan M. E., Austin R. H. Importance of DNA stiffness in protein-DNA binding specificity. Nature. 1987 Sep 17;329(6136):263–266. doi: 10.1038/329263a0. [DOI] [PubMed] [Google Scholar]
  12. Hustedt E. J., Spaltenstein A., Kirchner J. J., Hopkins P. B., Robinson B. H. Motions of short DNA duplexes: an analysis of DNA dynamics using an EPR-active probe. Biochemistry. 1993 Feb 23;32(7):1774–1787. doi: 10.1021/bi00058a011. [DOI] [PubMed] [Google Scholar]
  13. Kahn J. D., Yun E., Crothers D. M. Detection of localized DNA flexibility. Nature. 1994 Mar 10;368(6467):163–166. doi: 10.1038/368163a0. [DOI] [PubMed] [Google Scholar]
  14. Kim U. S., Fujimoto B. S., Furlong C. E., Sundstrom J. A., Humbert R., Teller D. C., Schurr J. M. Dynamics and structures of DNA: long-range effects of a 16 base-pair (CG)8 sequence on secondary structure. Biopolymers. 1993 Nov;33(11):1725–1745. doi: 10.1002/bip.360331110. [DOI] [PubMed] [Google Scholar]
  15. Lundin M., Nehlin J. O., Ronne H. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol. 1994 Mar;14(3):1979–1985. doi: 10.1128/mcb.14.3.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Naimushin A. N., Fujimoto B. S., Schurr J. M. Dynamic bending rigidity of a 200-bp DNA in 4 mM ionic strength: a transient polarization grating study. Biophys J. 2000 Mar;78(3):1498–1518. doi: 10.1016/S0006-3495(00)76703-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nardulli A. M., Romine L. E., Carpo C., Greene G. L., Rainish B. Estrogen receptor affinity and location of consensus and imperfect estrogen response elements influence transcription activation of simplified promoters. Mol Endocrinol. 1996 Jun;10(6):694–704. doi: 10.1210/mend.10.6.8776729. [DOI] [PubMed] [Google Scholar]
  18. Okonogi T. M., Reese A. W., Alley S. C., Hopkins P. B., Robinson B. H. Flexibility of duplex DNA on the submicrosecond timescale. Biophys J. 1999 Dec;77(6):3256–3276. doi: 10.1016/S0006-3495(99)77157-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Patikoglou G., Burley S. K. Eukaryotic transcription factor-DNA complexes. Annu Rev Biophys Biomol Struct. 1997;26:289–325. doi: 10.1146/annurev.biophys.26.1.289. [DOI] [PubMed] [Google Scholar]
  20. Richmond T. J., Finch J. T., Rushton B., Rhodes D., Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  21. Satchwell S. C., Drew H. R., Travers A. A. Sequence periodicities in chicken nucleosome core DNA. J Mol Biol. 1986 Oct 20;191(4):659–675. doi: 10.1016/0022-2836(86)90452-3. [DOI] [PubMed] [Google Scholar]
  22. Schellman J. A., Harvey S. C. Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophys Chem. 1995 Jun-Jul;55(1-2):95–114. doi: 10.1016/0301-4622(94)00144-9. [DOI] [PubMed] [Google Scholar]
  23. Schurr J. M., Delrow J. J., Fujimoto B. S., Benight A. S. The question of long-range allosteric transitions in DNA. Biopolymers. 1997;44(3):283–308. doi: 10.1002/(SICI)1097-0282(1997)44:3<283::AID-BIP7>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  24. Schurr J. M., Kim U. S., Song L., Fujimoto B. S. Dynamics and structures of DNA. Biochem Soc Trans. 1991 Apr;19(2):497–497. doi: 10.1042/bst0190497. [DOI] [PubMed] [Google Scholar]
  25. Song L., Schurr J. M. Dynamic bending rigidity of DNA. Biopolymers. 1990;30(3-4):229–237. doi: 10.1002/bip.360300302. [DOI] [PubMed] [Google Scholar]
  26. Thompson B. J., Camien M. N., Warner R. C. Kinetics of branch migration in double-stranded DNA. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2299–2303. doi: 10.1073/pnas.73.7.2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wolffe A. P. Architectural transcription factors. Science. 1994 May 20;264(5162):1100–1101. doi: 10.1126/science.8178167. [DOI] [PubMed] [Google Scholar]
  28. Wu P., Fujimoto B. S., Schurr J. M. Time-resolved fluorescence polarization anisotropy of short restriction fragments: the friction factor for rotation of DNA about its symmetry axis. Biopolymers. 1987 Sep;26(9):1463–1488. doi: 10.1002/bip.360260903. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES