Abstract
Phosphorescence quenching of certain metalloporphyrins is used to measure tissue and microvascular pO(2). Oxygen quenching of metalloporphyrin triplet states creates singlet oxygen, which is highly reactive in biological systems, and these oxygen-consuming reactions are capable of perturbing tissue oxygenation. Kinetics of photochemical oxygen consumption were measured for a Pd-porphyrin in two model systems in vitro over a range of irradiances (1.34-134 mW cm(-2)). For a given irradiance, and, after correction for differing porphyrin concentrations, rates of oxygen consumption were similar when the Pd-porphyrin was bound to bovine serum albumin and when it was taken up by tumor cells in spheroids. At irradiances comparable to those used in imaging superficial anatomy, rates of oxygen consumption were sufficiently low (2.5 microM s(-1)) that tissue oxygenation would be reduced by a maximum of 6%. An irradiance of 20 mW cm(-2), however, initiated a rate of oxygen consumption capable of reducing tissue pO(2) by at least 20-40%. These measured rates of consumption impose limitations on the use of phosphorescence quenching in thick tissues. The irreversible photobleaching of the Pd-porphyrin was also measured indirectly. The bleaching branching ratio, 23 M(-1), is significantly lower than that of porphyrin photodynamic agents.
Full Text
The Full Text of this article is available as a PDF (104.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brizel D. M., Scully S. P., Harrelson J. M., Layfield L. J., Bean J. M., Prosnitz L. R., Dewhirst M. W. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996 Mar 1;56(5):941–943. [PubMed] [Google Scholar]
- Buerk D. G., Tsai A. G., Intaglietta M., Johnson P. C. In vivo tissue pO2 measurements in hamster skinfold by recessed pO2 microelectrodes and phosphorescence quenching are in agreement. Microcirculation. 1998;5(2-3):219–225. [PubMed] [Google Scholar]
- Cerniglia G. J., Wilson D. F., Pawlowski M., Vinogradov S., Biaglow J. Intravascular oxygen distribution in subcutaneous 9L tumors and radiation sensitivity. J Appl Physiol (1985) 1997 Jun;82(6):1939–1945. doi: 10.1152/jappl.1997.82.6.1939. [DOI] [PubMed] [Google Scholar]
- Chong P. L., Thompson T. E. Oxygen quenching of pyrene-lipid fluorescence in phosphatidylcholine vesicles. A probe for membrane organization. Biophys J. 1985 May;47(5):613–621. doi: 10.1016/S0006-3495(85)83957-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georgakoudi I., Foster T. H. Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry. Photochem Photobiol. 1998 Jun;67(6):612–625. [PubMed] [Google Scholar]
- Georgakoudi I., Nichols M. G., Foster T. H. The mechanism of Photofrin photobleaching and its consequences for photodynamic dosimetry. Photochem Photobiol. 1997 Jan;65(1):135–144. doi: 10.1111/j.1751-1097.1997.tb01889.x. [DOI] [PubMed] [Google Scholar]
- Mang T. S., Dougherty T. J., Potter W. R., Boyle D. G., Somer S., Moan J. Photobleaching of porphyrins used in photodynamic therapy and implications for therapy. Photochem Photobiol. 1987 Apr;45(4):501–506. doi: 10.1111/j.1751-1097.1987.tb05409.x. [DOI] [PubMed] [Google Scholar]
- McIlroy B. W., Curnow A., Buonaccorsi G., Scott M. A., Bown S. G., MacRobert A. J. Spatial measurement of oxygen levels during photodynamic therapy using time-resolved optical spectroscopy. J Photochem Photobiol B. 1998 Apr;43(1):47–55. doi: 10.1016/s1011-1344(98)00081-5. [DOI] [PubMed] [Google Scholar]
- Moan J., Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol. 1991 Apr;53(4):549–553. doi: 10.1111/j.1751-1097.1991.tb03669.x. [DOI] [PubMed] [Google Scholar]
- Moan J., Rimington C., Malik Z. Photoinduced degradation and modification of Photofrin II in cells in vitro. Photochem Photobiol. 1988 Mar;47(3):363–367. doi: 10.1111/j.1751-1097.1988.tb02738.x. [DOI] [PubMed] [Google Scholar]
- Mueller-Klieser W. Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids. Biophys J. 1984 Sep;46(3):343–348. doi: 10.1016/S0006-3495(84)84030-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols M. G., Foster T. H. Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids. Phys Med Biol. 1994 Dec;39(12):2161–2181. doi: 10.1088/0031-9155/39/12/003. [DOI] [PubMed] [Google Scholar]
- Okunieff P., Hoeckel M., Dunphy E. P., Schlenger K., Knoop C., Vaupel P. Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone. Int J Radiat Oncol Biol Phys. 1993 Jul 15;26(4):631–636. doi: 10.1016/0360-3016(93)90280-9. [DOI] [PubMed] [Google Scholar]
- Reddi E., Rodgers M. A., Jori G. Photophysical and photosensitizing properties of hematoporphyrin bound with human serum albumin. Prog Clin Biol Res. 1984;170:373–379. [PubMed] [Google Scholar]
- Rumsey W. L., Vanderkooi J. M., Wilson D. F. Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science. 1988 Sep 23;241(4873):1649–1651. doi: 10.1126/science.241.4873.1649. [DOI] [PubMed] [Google Scholar]
- Sinaasappel M., Ince C. Calibration of Pd-porphyrin phosphorescence for oxygen concentration measurements in vivo. J Appl Physiol (1985) 1996 Nov;81(5):2297–2303. doi: 10.1152/jappl.1996.81.5.2297. [DOI] [PubMed] [Google Scholar]
- Spikes J. D. Quantum yields and kinetics of the photobleaching of hematoporphyrin, Photofrin II, tetra(4-sulfonatophenyl)-porphine and uroporphyrin. Photochem Photobiol. 1992 Jun;55(6):797–808. doi: 10.1111/j.1751-1097.1992.tb08527.x. [DOI] [PubMed] [Google Scholar]
- Torres Filho I. P., Intaglietta M. Microvessel PO2 measurements by phosphorescence decay method. Am J Physiol. 1993 Oct;265(4 Pt 2):H1434–H1438. doi: 10.1152/ajpheart.1993.265.4.H1434. [DOI] [PubMed] [Google Scholar]
- Torres Filho I. P., Leunig M., Yuan F., Intaglietta M., Jain R. K. Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2081–2085. doi: 10.1073/pnas.91.6.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanderkooi J. M., Maniara G., Green T. J., Wilson D. F. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J Biol Chem. 1987 Apr 25;262(12):5476–5482. [PubMed] [Google Scholar]
- Vinogradov S. A., Lo L. W., Jenkins W. T., Evans S. M., Koch C., Wilson D. F. Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors. Biophys J. 1996 Apr;70(4):1609–1617. doi: 10.1016/S0006-3495(96)79764-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weishaupt K. R., Gomer C. J., Dougherty T. J. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976 Jul;36(7 Pt 1):2326–2329. [PubMed] [Google Scholar]
- Wilson D. F., Cerniglia G. J. Localization of tumors and evaluation of their state of oxygenation by phosphorescence imaging. Cancer Res. 1992 Jul 15;52(14):3988–3993. [PubMed] [Google Scholar]