Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2690–2701. doi: 10.1016/S0006-3495(00)76813-5

Conformational transitions in model silk peptides.

D Wilson 1, R Valluzzi 1, D Kaplan 1
PMCID: PMC1300858  PMID: 10777765

Abstract

Protein structural transitions and beta-sheet formation are a common problem both in vivo and in vitro and are of critical relevance in disparate areas such as protein processing and beta-amyloid and prion behavior. Silks provide a "databank" of well-characterized polymorphic sequences, acting as a window onto structural transitions. Peptides with conformationally polymorphic silk-like sequences, expected to exhibit an intractable beta-sheet form, were characterized using Fourier transform infrared spectroscopy, circular dichroism, and electron diffraction. Polymorphs resembling the silk I, silk II (beta-sheet), and silk III (threefold polyglycine II-like helix) crystal structures were identified for the peptide fibroin C (GAGAGS repetitive sequence). Two peptides based on silk amorphous sequences, fibroin A (GAGAGY) and fibroin V (GDVGGAGATGGS), crystallized as silk I under most conditions. Methanol treatment of fibroin A resulted in a gradual transition from silk I to silk II, with an intermediate state involving a high proportion of beta-turns. Attenuated total reflectance Fourier transform infrared spectroscopy has been used to observe conformational changes as the peptides adsorb from solution onto a hydrophobic surface. Fibroin C has a beta-strand structure in solution but adopts a silk I-like structure upon adsorption, which when dried on the ZnSe crystal contains silk III crystallites.

Full Text

The Full Text of this article is available as a PDF (234.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMBROSE E. J., BAMFORD C. H., ELLIOTT A., HANBY W. E. Water soluble silk; an alpha-protein. Nature. 1951 Feb 17;167(4242):264–265. doi: 10.1038/167264a0. [DOI] [PubMed] [Google Scholar]
  2. Abe Y., Krimm S. Normal vibrations of polyglycine II. Biopolymers. 1972;11(9):1841–1853. doi: 10.1002/bip.1972.360110906. [DOI] [PubMed] [Google Scholar]
  3. Absolom D. R., Zingg W., Neumann A. W. Protein adsorption to polymer particles: role of surface properties. J Biomed Mater Res. 1987 Feb;21(2):161–171. doi: 10.1002/jbm.820210202. [DOI] [PubMed] [Google Scholar]
  4. Arcidiacono S., Mello C., Kaplan D., Cheley S., Bayley H. Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol. 1998 Jan;49(1):31–38. doi: 10.1007/s002530051133. [DOI] [PubMed] [Google Scholar]
  5. Bauer H. H., Müller M., Goette J., Merkle H. P., Fringeli U. P. Interfacial adsorption and aggregation associated changes in secondary structure of human calcitonin monitored by ATR-FTIR spectroscopy. Biochemistry. 1994 Oct 11;33(40):12276–12282. doi: 10.1021/bi00206a034. [DOI] [PubMed] [Google Scholar]
  6. Beckwitt R., Arcidiacono S. Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). J Biol Chem. 1994 Mar 4;269(9):6661–6663. [PubMed] [Google Scholar]
  7. Buijs J, Hlady V., V Adsorption Kinetics, Conformation, and Mobility of the Growth Hormone and Lysozyme on Solid Surfaces, Studied with TIRF. J Colloid Interface Sci. 1997 Jun 1;190(1):171–181. doi: 10.1006/jcis.1997.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CRICK F. H., RICH A. Structure of polyglycine II. Nature. 1955 Oct 22;176(4486):780–781. doi: 10.1038/176780a0. [DOI] [PubMed] [Google Scholar]
  9. Caessens P. W., De Jongh H. H., Norde W., Gruppen H. The adsorption-induced secondary structure of beta-casein and of distinct parts of its sequence in relation to foam and emulsion properties. Biochim Biophys Acta. 1999 Feb 10;1430(1):73–83. doi: 10.1016/s0167-4838(98)00274-x. [DOI] [PubMed] [Google Scholar]
  10. Castelain C., Genot C. Conformational changes of bovine serum albumin upon its adsorption in dodecane-in-water emulsions as revealed by front-face steady-state fluorescence. Biochim Biophys Acta. 1994 Jan 5;1199(1):59–64. doi: 10.1016/0304-4165(94)90096-5. [DOI] [PubMed] [Google Scholar]
  11. De Gioia L., Selvaggini C., Ghibaudi E., Diomede L., Bugiani O., Forloni G., Tagliavini F., Salmona M. Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. J Biol Chem. 1994 Mar 18;269(11):7859–7862. [PubMed] [Google Scholar]
  12. Dong A., Huang P., Caughey W. S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990 Apr 3;29(13):3303–3308. doi: 10.1021/bi00465a022. [DOI] [PubMed] [Google Scholar]
  13. Dufour E, Dalgalarrondo M, Adam L. Conformation of beta-Lactoglobulin at an Oil/Water Interface as Determined from Proteolysis and Spectroscopic Methods. J Colloid Interface Sci. 1998 Nov 15;207(2):264–272. doi: 10.1006/jcis.1998.5757. [DOI] [PubMed] [Google Scholar]
  14. FRASER R. D., MACRAE T. P., STEWART F. H., SUZUKI E. POLY-L-ALANYLGLYCINE. J Mol Biol. 1965 Apr;11:706–712. doi: 10.1016/s0022-2836(65)80028-6. [DOI] [PubMed] [Google Scholar]
  15. Feng L., Andrade J. D. Protein adsorption on low-temperature isotropic carbon: I. Protein conformational change probed by differential scanning calorimetry. J Biomed Mater Res. 1994 Jun;28(6):735–743. doi: 10.1002/jbm.820280611. [DOI] [PubMed] [Google Scholar]
  16. Fraser R. D., MacRae T. P., Stewart F. H. Poly-l-alanylglycyl-l-alanylglycyl-l-serylglycine: a model for the crystalline regions of silk fibroin. J Mol Biol. 1966 Aug;19(2):580–582. doi: 10.1016/s0022-2836(66)80026-8. [DOI] [PubMed] [Google Scholar]
  17. Goldfarb L. G., Brown P. The transmissible spongiform encephalopathies. Annu Rev Med. 1995;46:57–65. doi: 10.1146/annurev.med.46.1.57. [DOI] [PubMed] [Google Scholar]
  18. Goldsbury C. S., Cooper G. J., Goldie K. N., Müller S. A., Saafi E. L., Gruijters W. T., Misur M. P., Engel A., Aebi U., Kistler J. Polymorphic fibrillar assembly of human amylin. J Struct Biol. 1997 Jun;119(1):17–27. doi: 10.1006/jsbi.1997.3858. [DOI] [PubMed] [Google Scholar]
  19. He S. J., Valluzzi R., Gido S. P. Silk I structure in Bombyx mori silk foams. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):187–195. doi: 10.1016/s0141-8130(99)00004-5. [DOI] [PubMed] [Google Scholar]
  20. Hiltner W. A., Hopfinger A. J., Walton A. G. Helix-coil controversy for polyamino acids. J Am Chem Soc. 1972 Jun 14;94(12):4324–4327. doi: 10.1021/ja00767a049. [DOI] [PubMed] [Google Scholar]
  21. Keith H. D., Padden F. J., Jr, Giannoni G. Crystal structures of beta-poly-L-glutamic acid and its alkaline earth salts. J Mol Biol. 1969 Aug 14;43(3):423–438. doi: 10.1016/0022-2836(69)90350-7. [DOI] [PubMed] [Google Scholar]
  22. Lin Y. S., Hlady V., Janatova J. Adsorption of complement proteins on surfaces with a hydrophobicity gradient. Biomaterials. 1992;13(8):497–504. doi: 10.1016/0142-9612(92)90100-3. [DOI] [PubMed] [Google Scholar]
  23. Loeb G. I., Baier R. E. Spectroscopic analysis of polypeptide conformation in polymethyl glutamate monolayers. J Colloid Interface Sci. 1968 May;27(1):38–45. doi: 10.1016/0021-9797(68)90007-6. [DOI] [PubMed] [Google Scholar]
  24. Lotz B., Colonna Cesari F. The chemical structure and the crystalline structures of Bombyx mori silk fibroin. Biochimie. 1979;61(2):205–214. doi: 10.1016/s0300-9084(79)80067-x. [DOI] [PubMed] [Google Scholar]
  25. MARSH R. E., COREY R. B., PAULING L. An investigation of the structure of silk fibroin. Biochim Biophys Acta. 1955 Jan;16(1):1–34. doi: 10.1016/0006-3002(55)90178-5. [DOI] [PubMed] [Google Scholar]
  26. Malcolm B. R. Infrared absorption spectrum of water adsorbed on alpha-helical synthetic polypeptides. Nature. 1970 Sep 26;227(5265):1358–1358. doi: 10.1038/2271358a0. [DOI] [PubMed] [Google Scholar]
  27. Malcolm B. R. Multilayer formation by a compressed monolayer of poly-epsilon-benzyloxycarbonyl-L-lysine. Biochem J. 1968 Dec;110(4):733–737. doi: 10.1042/bj1100733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Malcolm B. R. Surface chemistry of poly (beta-benzyl L-aspartate). Biopolymers. 1970;9(8):911–922. doi: 10.1002/bip.1970.360090805. [DOI] [PubMed] [Google Scholar]
  29. Maste MCL, Norde W, Visser AJWG. Adsorption-Induced Conformational Changes in the Serine Proteinase Savinase: A Tryptophan Fluorescence and Circular Dichroism Study. J Colloid Interface Sci. 1997 Dec 15;196(2):224–230. doi: 10.1006/jcis.1997.5205. [DOI] [PubMed] [Google Scholar]
  30. Matsuno K., Lewis R. V., Middaugh C. R. The interaction of gamma-crystallins with model surfaces. Arch Biochem Biophys. 1991 Dec;291(2):349–355. doi: 10.1016/0003-9861(91)90145-9. [DOI] [PubMed] [Google Scholar]
  31. Mita K., Ichimura S., James T. C. Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol. 1994 Jun;38(6):583–592. doi: 10.1007/BF00175878. [DOI] [PubMed] [Google Scholar]
  32. Narsimhan G., Uraizee F. Kinetics of adsorption of globular proteins at an air-water interface. Biotechnol Prog. 1992 May-Jun;8(3):187–196. doi: 10.1021/bp00015a003. [DOI] [PubMed] [Google Scholar]
  33. Norde W., Zoungrana T. Surface-induced changes in the structure and activity of enzymes physically immobilized at solid/liquid interfaces. Biotechnol Appl Biochem. 1998 Oct;28(Pt 2):133–143. [PubMed] [Google Scholar]
  34. Rippon W. B., Walton A. G. Optical properties of the polyglycine II helix. Biopolymers. 1971;10(7):1207–1212. doi: 10.1002/bip.360100710. [DOI] [PubMed] [Google Scholar]
  35. Rippon W. B., Walton A. G. Spectroscopic characterization of poly(ala-gly-gly). J Am Chem Soc. 1972 Jun 14;94(12):4319–4324. doi: 10.1021/ja00767a048. [DOI] [PubMed] [Google Scholar]
  36. Ronish E. W., Krimm S. The calculated circular dichroism of polyproline II in the polarizability approximation. Biopolymers. 1974;13(8):1635–1651. doi: 10.1002/bip.1974.360130810. [DOI] [PubMed] [Google Scholar]
  37. Ronish E. W., Krimm S. Theoretical calculation of the circular dichroism of unordered polypeptide chains. Biopolymers. 1972;11(9):1919–1928. doi: 10.1002/bip.1972.360110912. [DOI] [PubMed] [Google Scholar]
  38. Shah N. K., Sharma M., Kirkpatrick A., Ramshaw J. A., Brodsky B. Gly-Gly-containing triplets of low stability adjacent to a type III collagen epitope. Biochemistry. 1997 May 13;36(19):5878–5883. doi: 10.1021/bi963146c. [DOI] [PubMed] [Google Scholar]
  39. Simmons A. H., Michal C. A., Jelinski L. W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science. 1996 Jan 5;271(5245):84–87. doi: 10.1126/science.271.5245.84. [DOI] [PubMed] [Google Scholar]
  40. Smith L. J., Clark D. C. Measurement of the secondary structure of adsorbed protein by circular dichroism. 1. Measurements of the helix content of adsorbed melittin. Biochim Biophys Acta. 1992 May 22;1121(1-2):111–118. doi: 10.1016/0167-4838(92)90344-d. [DOI] [PubMed] [Google Scholar]
  41. Thiel B. L., Guess K. B., Viney C. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers. 1997 Jun;41(7):703–719. doi: 10.1002/(SICI)1097-0282(199706)41:7<703::AID-BIP1>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  42. Tiffany M. L., Krimm S. Effect of temperature on the circular dichroism spectra of polypeptides in the extended state. Biopolymers. 1972;11(11):2309–2316. doi: 10.1002/bip.1972.360111109. [DOI] [PubMed] [Google Scholar]
  43. Valluzzi R., Gido S. P., Muller W., Kaplan D. L. Orientation of silk III at the air-water interface. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):237–242. doi: 10.1016/s0141-8130(99)00002-1. [DOI] [PubMed] [Google Scholar]
  44. Valluzzi R., He S. J., Gido S. P., Kaplan D. Bombyx mori silk fibroin liquid crystallinity and crystallization at aqueous fibroin-organic solvent interfaces. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):227–236. doi: 10.1016/s0141-8130(99)00005-7. [DOI] [PubMed] [Google Scholar]
  45. Winkler S., Szela S., Avtges P., Valluzzi R., Kirschner D. A., Kaplan D. Designing recombinant spider silk proteins to control assembly. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):265–270. doi: 10.1016/s0141-8130(98)00088-9. [DOI] [PubMed] [Google Scholar]
  46. Wu H., Fan Y., Sheng J., Sui S. F. Induction of changes in the secondary structure of globular proteins by a hydrophobic surface. Eur Biophys J. 1993;22(3):201–205. doi: 10.1007/BF00185781. [DOI] [PubMed] [Google Scholar]
  47. van Beek J. D., Kümmerlen J., Vollrath F., Meier B. H. Supercontracted spider dragline silk: a solid-state NMR study of the local structure. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):173–178. doi: 10.1016/s0141-8130(98)00083-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES