Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 May;78(5):2709–2715. doi: 10.1016/S0006-3495(00)76815-9

Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method.

D Uttenweiler 1, C Veigel 1, R Steubing 1, C Götz 1, S Mann 1, H Haussecker 1, B Jähne 1, R H Fink 1
PMCID: PMC1300860  PMID: 10777767

Abstract

We present a novel approach of automatically measuring motion in series of microscopic fluorescence images. As a differential method, the three-dimensional structure tensor technique is used to calculate the displacement vector field for every image of the sequence, from which the velocities are subsequently derived. We have used this method for the analysis of the movement of single actin filaments in the in vitro motility assay, where fluorescently labeled actin filaments move over a myosin decorated surface. With its fast implementation and subpixel accuracy, this approach is, in general, very valuable for analyzing dynamic processes by image sequence analysis.

Full Text

The Full Text of this article is available as a PDF (346.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anson M., Drummond D. R., Geeves M. A., Hennessey E. S., Ritchie M. D., Sparrow J. C. Actomyosin kinetics and in vitro motility of wild-type Drosophila actin and the effects of two mutations in the Act88F gene. Biophys J. 1995 May;68(5):1991–2003. doi: 10.1016/S0006-3495(95)80376-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Canepari M., Rossi R., Pellegrino M. A., Reggiani C., Bottinelli R. Speeds of actin translocation in vitro by myosins extracted from single rat muscle fibres of different types. Exp Physiol. 1999 Jul;84(4):803–806. [PubMed] [Google Scholar]
  3. Cuda G., Pate E., Cooke R., Sellers J. R. In vitro actin filament sliding velocities produced by mixtures of different types of myosin. Biophys J. 1997 Apr;72(4):1767–1779. doi: 10.1016/S0006-3495(97)78823-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gordon A. M., LaMadrid M. A., Chen Y., Luo Z., Chase P. B. Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J. 1997 Mar;72(3):1295–1307. doi: 10.1016/S0006-3495(97)78776-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hamelink W., Zegers J. G., Treijtel B. W., Blangé T. Path reconstruction as a tool for actin filament speed determination in the in vitro motility assay. Anal Biochem. 1999 Aug 15;273(1):12–19. doi: 10.1006/abio.1999.4178. [DOI] [PubMed] [Google Scholar]
  6. Harris D. E., Work S. S., Wright R. K., Alpert N. R., Warshaw D. M. Smooth, cardiac and skeletal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in vitro. J Muscle Res Cell Motil. 1994 Feb;15(1):11–19. doi: 10.1007/BF00123828. [DOI] [PubMed] [Google Scholar]
  7. Holmes K. C. Muscle proteins--their actions and interactions. Curr Opin Struct Biol. 1996 Dec;6(6):781–789. doi: 10.1016/s0959-440x(96)80008-x. [DOI] [PubMed] [Google Scholar]
  8. Holmes K. C. The swinging lever-arm hypothesis of muscle contraction. Curr Biol. 1997 Feb 1;7(2):R112–R118. doi: 10.1016/s0960-9822(06)00051-0. [DOI] [PubMed] [Google Scholar]
  9. Hynes T. R., Block S. M., White B. T., Spudich J. A. Movement of myosin fragments in vitro: domains involved in force production. Cell. 1987 Mar 27;48(6):953–963. doi: 10.1016/0092-8674(87)90704-5. [DOI] [PubMed] [Google Scholar]
  10. Kron S. J., Spudich J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6272–6276. doi: 10.1073/pnas.83.17.6272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kron S. J., Toyoshima Y. Y., Uyeda T. Q., Spudich J. A. Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 1991;196:399–416. doi: 10.1016/0076-6879(91)96035-p. [DOI] [PubMed] [Google Scholar]
  12. Kurzawa-Goertz S. E., Perreault-Micale C. L., Trybus K. M., Szent-Györgyi A. G., Geeves M. A. Loop I can modulate ADP affinity, ATPase activity, and motility of different scallop myosins. Transient kinetic analysis of S1 isoforms. Biochemistry. 1998 May 19;37(20):7517–7525. doi: 10.1021/bi972844+. [DOI] [PubMed] [Google Scholar]
  13. Margossian S. S., Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85(Pt B):55–71. doi: 10.1016/0076-6879(82)85009-x. [DOI] [PubMed] [Google Scholar]
  14. Marston S. B., Fraser I. D., Bing W., Roper G. A simple method for automatic tracking of actin filaments in the motility assay. J Muscle Res Cell Motil. 1996 Aug;17(4):497–506. doi: 10.1007/BF00123365. [DOI] [PubMed] [Google Scholar]
  15. Murphy C. T., Spudich J. A. Dictyostelium myosin 25-50K loop substitutions specifically affect ADP release rates. Biochemistry. 1998 May 12;37(19):6738–6744. doi: 10.1021/bi972903j. [DOI] [PubMed] [Google Scholar]
  16. Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
  17. Sellers J. R., Cuda G., Wang F., Homsher E. Myosin-specific adaptations of the motility assay. Methods Cell Biol. 1993;39:23–49. doi: 10.1016/s0091-679x(08)60159-4. [DOI] [PubMed] [Google Scholar]
  18. Sweeney H. L., Rosenfeld S. S., Brown F., Faust L., Smith J., Xing J., Stein L. A., Sellers J. R. Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J Biol Chem. 1998 Mar 13;273(11):6262–6270. doi: 10.1074/jbc.273.11.6262. [DOI] [PubMed] [Google Scholar]
  19. Umemoto S., Sellers J. R. Characterization of in vitro motility assays using smooth muscle and cytoplasmic myosins. J Biol Chem. 1990 Sep 5;265(25):14864–14869. [PubMed] [Google Scholar]
  20. Uyeda T. Q., Abramson P. D., Spudich J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4459–4464. doi: 10.1073/pnas.93.9.4459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Uyeda T. Q., Ruppel K. M., Spudich J. A. Enzymatic activities correlate with chimaeric substitutions at the actin-binding face of myosin. Nature. 1994 Apr 7;368(6471):567–569. doi: 10.1038/368567a0. [DOI] [PubMed] [Google Scholar]
  22. Work S. S., Warshaw D. M. Computer-assisted tracking of actin filament motility. Anal Biochem. 1992 May 1;202(2):275–285. doi: 10.1016/0003-2697(92)90106-h. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES