Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):2776–2797. doi: 10.1016/S0006-3495(00)76822-6

Spatial buffering of potassium ions in brain extracellular space.

K C Chen 1, C Nicholson 1
PMCID: PMC1300867  PMID: 10827962

Abstract

It has long been assumed that one important mechanism for the dissipation of local potassium gradients in the brain extracellular space is the so-called spatial buffer, generally associated with glial cells. To date, however, there has been no analytical description of the characteristic patterns of K(+) clearance mediated by such a mechanism. This study reanalyzed a mathematical model of Gardner-Medwin (1983, J. Physiol. (Lond.). 335:393-426) that had previously been solved numerically. Under suitable approximations, the transient solutions for the potassium concentrations and the corresponding membrane potentials of glial cells in a finite, parallel domain were derived. The analytic results were substantiated by numerical simulations of a detailed two-compartment model. This simulation explored the dependence of spatial buffer current and extracellular K(+) on the distribution of inward rectifier K(+) channels in the glial endfoot and nonendfoot membranes, the glial geometric length, and the effect of passive KCl uptake. Regarding the glial cells as an equivalent leaky cable, the analyses indicated that a maximum endfoot current occurs when the glial geometric length is equal to the corresponding electrotonic space constant. Consequently, a long glial process is unsuitable for spatial buffering, unless the axial space constant can match the length of the process. Finally, this study discussed whether the spatial buffer mechanism is able to efficiently transport K(+) over distances of more than several glial space constants.

Full Text

The Full Text of this article is available as a PDF (413.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amédée T., Robert A., Coles J. A. Potassium homeostasis and glial energy metabolism. Glia. 1997 Sep;21(1):46–55. doi: 10.1002/(sici)1098-1136(199709)21:1<46::aid-glia5>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  2. Ballanyi K., Grafe P., ten Bruggencate G. Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol. 1987 Jan;382:159–174. doi: 10.1113/jphysiol.1987.sp016361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barres B. A., Chun L. L., Corey D. P. Ion channels in vertebrate glia. Annu Rev Neurosci. 1990;13:441–474. doi: 10.1146/annurev.ne.13.030190.002301. [DOI] [PubMed] [Google Scholar]
  4. Barres B. A. New roles for glia. J Neurosci. 1991 Dec;11(12):3685–3694. doi: 10.1523/JNEUROSCI.11-12-03685.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brew H., Attwell D. Is the potassium channel distribution in glial cells optimal for spatial buffering of potassium? Biophys J. 1985 Nov;48(5):843–847. doi: 10.1016/S0006-3495(85)83843-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brew H., Gray P. T., Mobbs P., Attwell D. Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature. 1986 Dec 4;324(6096):466–468. doi: 10.1038/324466a0. [DOI] [PubMed] [Google Scholar]
  8. Chung S. H., Allen T. W., Hoyles M., Kuyucak S. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys J. 1999 Nov;77(5):2517–2533. doi: 10.1016/S0006-3495(99)77087-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coles J. A., Orkand R. K. Modification of potassium movement through the retina of the drone (Apis mellifera male) by glial uptake. J Physiol. 1983 Jul;340:157–174. doi: 10.1113/jphysiol.1983.sp014756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coles J. A., Tsacopoulos M. Potassium activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation. J Physiol. 1979 May;290(2):525–549. doi: 10.1113/jphysiol.1979.sp012788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dietzel I., Heinemann U., Hofmeier G., Lux H. D. Stimulus-induced changes in extracellular Na+ and Cl- concentration in relation to changes in the size of the extracellular space. Exp Brain Res. 1982;46(1):73–84. doi: 10.1007/BF00238100. [DOI] [PubMed] [Google Scholar]
  12. Dietzel I., Heinemann U., Lux H. D. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia. 1989;2(1):25–44. doi: 10.1002/glia.440020104. [DOI] [PubMed] [Google Scholar]
  13. Eberhardt W., Reichenbach A. Spatial buffering of potassium by retinal Müller (glial) cells of various morphologies calculated by a model. Neuroscience. 1987 Aug;22(2):687–696. doi: 10.1016/0306-4522(87)90365-4. [DOI] [PubMed] [Google Scholar]
  14. Gardner-Medwin A. R. A new framework for assessment of potassium-buffering mechanisms. Ann N Y Acad Sci. 1986;481:287–302. doi: 10.1111/j.1749-6632.1986.tb27159.x. [DOI] [PubMed] [Google Scholar]
  15. Gardner-Medwin A. R. A study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol. 1983 Feb;335:353–374. doi: 10.1113/jphysiol.1983.sp014539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gardner-Medwin A. R. Analysis of potassium dynamics in mammalian brain tissue. J Physiol. 1983 Feb;335:393–426. doi: 10.1113/jphysiol.1983.sp014541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gardner-Medwin A. R., Coles J. A., Tsacopoulos M. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone. Brain Res. 1981 Mar 30;209(2):452–457. doi: 10.1016/0006-8993(81)90169-4. [DOI] [PubMed] [Google Scholar]
  18. Gardner-Medwin A. R., Nicholson C. Changes of extracellular potassium activity induced by electric current through brain tissue in the rat. J Physiol. 1983 Feb;335:375–392. doi: 10.1113/jphysiol.1983.sp014540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Immel J., Steinberg R. H. Spatial buffering of K+ by the retinal pigment epithelium in frog. J Neurosci. 1986 Nov;6(11):3197–3204. doi: 10.1523/JNEUROSCI.06-11-03197.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Karwoski C. J., Lu H. K., Newman E. A. Spatial buffering of light-evoked potassium increases by retinal Müller (glial) cells. Science. 1989 May 5;244(4904):578–580. doi: 10.1126/science.2785716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kettenmann H., Sonnhof U., Schachner M. Exclusive potassium dependence of the membrane potential in cultured mouse oligodendrocytes. J Neurosci. 1983 Mar;3(3):500–505. doi: 10.1523/JNEUROSCI.03-03-00500.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuffler S. W., Nicholls J. G., Orkand R. K. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):768–787. doi: 10.1152/jn.1966.29.4.768. [DOI] [PubMed] [Google Scholar]
  23. Lehmenkühler A., Syková E., Svoboda J., Zilles K., Nicholson C. Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience. 1993 Jul;55(2):339–351. doi: 10.1016/0306-4522(93)90503-8. [DOI] [PubMed] [Google Scholar]
  24. Lothman E. W., Somjen G. G. Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. J Physiol. 1975 Oct;252(1):115–136. doi: 10.1113/jphysiol.1975.sp011137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Luby-Phelps K., Taylor D. L., Lanni F. Probing the structure of cytoplasm. J Cell Biol. 1986 Jun;102(6):2015–2022. doi: 10.1083/jcb.102.6.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mi H., Deerinck T. J., Jones M., Ellisman M. H., Schwarz T. L. Inwardly rectifying K+ channels that may participate in K+ buffering are localized in microvilli of Schwann cells. J Neurosci. 1996 Apr 15;16(8):2421–2429. doi: 10.1523/JNEUROSCI.16-08-02421.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Newman E. A. High potassium conductance in astrocyte endfeet. Science. 1986 Jul 25;233(4762):453–454. doi: 10.1126/science.3726539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Newman E. A. Inward-rectifying potassium channels in retinal glial (Müller) cells. J Neurosci. 1993 Aug;13(8):3333–3345. doi: 10.1523/JNEUROSCI.13-08-03333.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Newman E. A. Membrane physiology of retinal glial (Müller) cells. J Neurosci. 1985 Aug;5(8):2225–2239. doi: 10.1523/JNEUROSCI.05-08-02225.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Newman E. A., Odette L. L. Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J Neurophysiol. 1984 Jan;51(1):164–182. doi: 10.1152/jn.1984.51.1.164. [DOI] [PubMed] [Google Scholar]
  31. Newman E. A. Regional specialization of retinal glial cell membrane. Nature. 1984 May 10;309(5964):155–157. doi: 10.1038/309155a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nicholson C., Phillips J. M. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol. 1981 Dec;321:225–257. doi: 10.1113/jphysiol.1981.sp013981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nicholson C., Syková E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998 May;21(5):207–215. doi: 10.1016/s0166-2236(98)01261-2. [DOI] [PubMed] [Google Scholar]
  34. Oakley B., 2nd, Katz B. J., Xu Z., Zheng J. Spatial buffering of extracellular potassium by Müller (glial) cells in the toad retina. Exp Eye Res. 1992 Oct;55(4):539–550. doi: 10.1016/s0014-4835(05)80166-6. [DOI] [PubMed] [Google Scholar]
  35. Odette L. L., Newman E. A. Model of potassium dynamics in the central nervous system. Glia. 1988;1(3):198–210. doi: 10.1002/glia.440010305. [DOI] [PubMed] [Google Scholar]
  36. Orkand R. K., Nicholls J. G., Kuffler S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):788–806. doi: 10.1152/jn.1966.29.4.788. [DOI] [PubMed] [Google Scholar]
  37. Paulson O. B., Newman E. A. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science. 1987 Aug 21;237(4817):896–898. doi: 10.1126/science.3616619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pilgrim C., Reisert I., Grab D. Volume densities and specific surfaces of neuronal and glial tissue elements in the rat supraoptic nucleus. J Comp Neurol. 1982 Nov 10;211(4):427–431. doi: 10.1002/cne.902110409. [DOI] [PubMed] [Google Scholar]
  39. Ransom B. R., Yamate C. L., Connors B. W. Activity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study. J Neurosci. 1985 Feb;5(2):532–535. doi: 10.1523/JNEUROSCI.05-02-00532.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Skatchkov S. N., Krusek J., Reichenbach A., Orkand R. K. Potassium buffering by Müller cells isolated from the center and periphery of the frog retina. Glia. 1999 Aug;27(2):171–180. [PubMed] [Google Scholar]
  41. Skatchkov S. N., Vyklický L., Orkand R. K. Potassium currents in endfeet of isolated Müller cells from the frog retina. Glia. 1995 Sep;15(1):54–64. doi: 10.1002/glia.440150107. [DOI] [PubMed] [Google Scholar]
  42. Sontheimer H. Voltage-dependent ion channels in glial cells. Glia. 1994 Jun;11(2):156–172. doi: 10.1002/glia.440110210. [DOI] [PubMed] [Google Scholar]
  43. Syková E. Extracellular K+ accumulation in the central nervous system. Prog Biophys Mol Biol. 1983;42(2-3):135–189. doi: 10.1016/0079-6107(83)90006-8. [DOI] [PubMed] [Google Scholar]
  44. Walz W. Role of glial cells in the regulation of the brain ion microenvironment. Prog Neurobiol. 1989;33(4):309–333. doi: 10.1016/0301-0082(89)90005-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES