Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):2821–2833. doi: 10.1016/S0006-3495(00)76825-1

Analysis of the composite response of shear wave resonators to the attachment of mammalian cells.

J Wegener 1, J Seebach 1, A Janshoff 1, H J Galla 1
PMCID: PMC1300870  PMID: 10827965

Abstract

The suitability of the quartz crystal microbalance (QCM) technique for monitoring the attachment and spreading of mammalian cells has recently been established. Different cell species were shown to generate an individual response of the QCM when they make contact with the resonator surface. Little is known, however, about the underlying mechanisms that determine the QCM signal for a particular cell type. Here we describe our results for different experimental approaches designed to probe the particular contributions of various subcellular compartments to the overall QCM signal. Using AC impedance analysis in a frequency range that closely embraces the resonators' fundamental frequency, we have explored the signal contribution of the extracellular matrix, the actin cytoskeleton, the medium that overlays the cell layer, as well as the liquid compartment that is known to exist between the basal plasma membrane and the culture substrate. Results indicate that the QCM technique is only sensitive to those parts of the cellular body that are involved in cell substrate adhesion and are therefore close to the resonator surface. Because of its noninvasive nature, sensitivity, and time resolution, the QCM is a powerful means of quantitatively studying various aspects of cell-substrate interactions.

Full Text

The Full Text of this article is available as a PDF (329.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gath U., Hakvoort A., Wegener J., Decker S., Galla H. J. Porcine choroid plexus cells in culture: expression of polarized phenotype, maintenance of barrier properties and apical secretion of CSF-components. Eur J Cell Biol. 1997 Sep;74(1):68–78. [PubMed] [Google Scholar]
  2. Gryte D. M., Ward M. D., Hu W. S. Real-time measurement of anchorage-dependent cell adhesion using a quartz crystal microbalance. Biotechnol Prog. 1993 Jan-Feb;9(1):105–108. doi: 10.1021/bp00019a016. [DOI] [PubMed] [Google Scholar]
  3. Janshoff A., Steinem C., Sieber M., el Bayâ A., Schmidt M. A., Galla H. J. Quartz crystal microbalance investigation of the interaction of bacterial toxins with ganglioside containing solid supported membranes. Eur Biophys J. 1997;26(3):261–270. doi: 10.1007/s002490050079. [DOI] [PubMed] [Google Scholar]
  4. Janshoff A., Wegener J., Sieber M., Galla H. J. Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J. 1996;25(2):93–103. doi: 10.1007/s002490050021. [DOI] [PubMed] [Google Scholar]
  5. Kramer R. H., Fuh G. M., Bensch K. G., Karasek M. A. Synthesis of extracellular matrix glycoproteins by cultured microvascular endothelial cells isolated from the dermis of neonatal and adult skin. J Cell Physiol. 1985 Apr;123(1):1–9. doi: 10.1002/jcp.1041230102. [DOI] [PubMed] [Google Scholar]
  6. Lo C. M., Keese C. R., Giaever I. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys J. 1995 Dec;69(6):2800–2807. doi: 10.1016/S0006-3495(95)80153-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Muramatsu H., Dicks J. M., Tamiya E., Karube I. Piezoelectric crystal biosensor modified with protein A for determination of immunoglobulins. Anal Chem. 1987 Dec 1;59(23):2760–2763. doi: 10.1021/ac00150a007. [DOI] [PubMed] [Google Scholar]
  8. Müller J. D., Chen Y., Gratton E. Resolving heterogeneity on the single molecular level with the photon-counting histogram. Biophys J. 2000 Jan;78(1):474–486. doi: 10.1016/S0006-3495(00)76610-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Parak W. J., Domke J., George M., Kardinal A., Radmacher M., Gaub H. E., de Roos A. D., Theuvenet A. P., Wiegand G., Sackmann E. Electrically excitable normal rat kidney fibroblasts: A new model system for cell-semiconductor hybrids. Biophys J. 1999 Mar;76(3):1659–1667. doi: 10.1016/S0006-3495(99)77325-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Periasamy N., Kao H. P., Fushimi K., Verkman A. S. Organic osmolytes increase cytoplasmic viscosity in kidney cells. Am J Physiol. 1992 Oct;263(4 Pt 1):C901–C907. doi: 10.1152/ajpcell.1992.263.4.C901. [DOI] [PubMed] [Google Scholar]
  11. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  12. Redepenning J., Schlesinger T. K., Mechalke E. J., Puleo D. A., Bizios R. Osteoblast attachment monitored with a quartz crystal microbalance. Anal Chem. 1993 Dec 1;65(23):3378–3381. doi: 10.1021/ac00071a008. [DOI] [PubMed] [Google Scholar]
  13. Rickert J., Brecht A., Göpel W. Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens Bioelectron. 1997;12(7):567–575. doi: 10.1016/s0956-5663(96)00077-2. [DOI] [PubMed] [Google Scholar]
  14. Rodahl M., Hök F., Fredriksson C., Keller C. A., Krozer A., Brzezinski P., Voinova M., Kasemo B. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss. 1997;(107):229–246. doi: 10.1039/a703137h. [DOI] [PubMed] [Google Scholar]
  15. Voger E. A., Bussian R. W. Short-term cell-attachment rates: a surface-sensitive test of cell-substrate compatibility. J Biomed Mater Res. 1987 Oct;21(10):1197–1211. doi: 10.1002/jbm.820211004. [DOI] [PubMed] [Google Scholar]
  16. Wegener J., Janshoff A., Galla H. J. Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J. 1999;28(1):26–37. doi: 10.1007/s002490050180. [DOI] [PubMed] [Google Scholar]
  17. Wegener J., Zink S., Rösen P., Galla H. Use of electrochemical impedance measurements to monitor beta-adrenergic stimulation of bovine aortic endothelial cells. Pflugers Arch. 1999 May;437(6):925–934. doi: 10.1007/s004240050864. [DOI] [PubMed] [Google Scholar]
  18. Zink S., Rösen P., Sackmann B., Lemoine H. Regulation of endothelial permeability by beta-adrenoceptor agonists: contribution of beta 1- and beta 2-adrenoceptors. Biochim Biophys Acta. 1993 Sep 13;1178(3):286–298. doi: 10.1016/0167-4889(93)90206-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES