Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):2844–2862. doi: 10.1016/S0006-3495(00)76827-5

A membrane bending model of outer hair cell electromotility.

R M Raphael 1, A S Popel 1, W E Brownell 1
PMCID: PMC1300872  PMID: 10827967

Abstract

We propose a new mechanism for outer hair cell electromotility based on electrically induced localized changes in the curvature of the plasma membrane (flexoelectricity). Electromechanical coupling in the cell's lateral wall is modeled in terms of linear constitutive equations for a flexoelectric membrane and then extended to nonlinear coupling based on the Langevin function. The Langevin function, which describes the fraction of dipoles aligned with an applied electric field, is shown to be capable of predicting the electromotility voltage displacement function. We calculate the electrical and mechanical contributions to the force balance and show that the model is consistent with experimentally measured values for electromechanical properties. The model rationalizes several experimental observations associated with outer hair cell electromotility and provides for constant surface area of the plasma membrane. The model accounts for the isometric force generated by the cell and explains the observation that the disruption of spectrin by diamide reduces force generation in the cell. We discuss the relation of this mechanism to other proposed models of outer hair cell electromotility. Our analysis suggests that rotation of membrane dipoles and the accompanying mechanical deformation may be the molecular mechanism of electromotility.

Full Text

The Full Text of this article is available as a PDF (211.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi M., Iwasa K. H. Effect of diamide on force generation and axial stiffness of the cochlear outer hair cell. Biophys J. 1997 Nov;73(5):2809–2818. doi: 10.1016/S0006-3495(97)78310-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adachi M., Iwasa K. H. Electrically driven motor in the outer hair cell: effect of a mechanical constraint. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7244–7249. doi: 10.1073/pnas.96.13.7244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashmore J. F. A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol. 1987 Jul;388:323–347. doi: 10.1113/jphysiol.1987.sp016617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ashmore J. F. The G.L. Brown Prize Lecture. The cellular machinery of the cochlea. Exp Physiol. 1994 Mar;79(2):113–134. doi: 10.1113/expphysiol.1994.sp003746. [DOI] [PubMed] [Google Scholar]
  5. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  6. Boey S. K., Boal D. H., Discher D. E. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J. 1998 Sep;75(3):1573–1583. doi: 10.1016/S0006-3495(98)74075-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brownell W. E., Bader C. R., Bertrand D., de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985 Jan 11;227(4683):194–196. doi: 10.1126/science.3966153. [DOI] [PubMed] [Google Scholar]
  8. Dallos P., Evans B. N., Hallworth R. Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature. 1991 Mar 14;350(6314):155–157. doi: 10.1038/350155a0. [DOI] [PubMed] [Google Scholar]
  9. Dallos P., Hallworth R., Evans B. N. Theory of electrically driven shape changes of cochlear outer hair cells. J Neurophysiol. 1993 Jul;70(1):299–323. doi: 10.1152/jn.1993.70.1.299. [DOI] [PubMed] [Google Scholar]
  10. Dallos P. Outer hair cells: the inside story. Ann Otol Rhinol Laryngol Suppl. 1997 May;168:16–22. [PubMed] [Google Scholar]
  11. Dieler R., Shehata-Dieler W. E., Brownell W. E. Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. J Neurocytol. 1991 Aug;20(8):637–653. doi: 10.1007/BF01187066. [DOI] [PubMed] [Google Scholar]
  12. Evans E. A., Hochmuth R. M. Membrane viscoplastic flow. Biophys J. 1976 Jan;16(1):13–26. doi: 10.1016/S0006-3495(76)85659-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Forge A. Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res. 1991 Sep;265(3):473–483. doi: 10.1007/BF00340870. [DOI] [PubMed] [Google Scholar]
  14. Frank G., Hemmert W., Gummer A. W. Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4420–4425. doi: 10.1073/pnas.96.8.4420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frolenkov G. I., Atzori M., Kalinec F., Mammano F., Kachar B. The membrane-based mechanism of cell motility in cochlear outer hair cells. Mol Biol Cell. 1998 Aug;9(8):1961–1968. doi: 10.1091/mbc.9.8.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Furness D. N., Hackney C. M. Comparative ultrastructure of subsurface cisternae in inner and outer hair cells of the guinea pig cochlea. Eur Arch Otorhinolaryngol. 1990;247(1):12–15. doi: 10.1007/BF00240941. [DOI] [PubMed] [Google Scholar]
  17. Gale J. E., Ashmore J. F. An intrinsic frequency limit to the cochlear amplifier. Nature. 1997 Sep 4;389(6646):63–66. doi: 10.1038/37968. [DOI] [PubMed] [Google Scholar]
  18. Gale J. E., Ashmore J. F. The outer hair cell motor in membrane patches. Pflugers Arch. 1997 Jul;434(3):267–271. doi: 10.1007/s004240050395. [DOI] [PubMed] [Google Scholar]
  19. Gulley R. L., Reese T. S. Regional specialization of the hair cell plasmalemma in the organ of corti. Anat Rec. 1977 Sep;189(1):109–123. doi: 10.1002/ar.1091890108. [DOI] [PubMed] [Google Scholar]
  20. Hallworth R. Modulation of outer hair cell compliance and force by agents that affect hearing. Hear Res. 1997 Dec;114(1-2):204–212. doi: 10.1016/s0378-5955(97)00167-6. [DOI] [PubMed] [Google Scholar]
  21. Hansen J. C., Skalak R., Chien S., Hoger A. An elastic network model based on the structure of the red blood cell membrane skeleton. Biophys J. 1996 Jan;70(1):146–166. doi: 10.1016/S0006-3495(96)79556-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  23. Holley M. C., Kalinec F., Kachar B. Structure of the cortical cytoskeleton in mammalian outer hair cells. J Cell Sci. 1992 Jul;102(Pt 3):569–580. doi: 10.1242/jcs.102.3.569. [DOI] [PubMed] [Google Scholar]
  24. Huang G., Santos-Sacchi J. Mapping the distribution of the outer hair cell motility voltage sensor by electrical amputation. Biophys J. 1993 Nov;65(5):2228–2236. doi: 10.1016/S0006-3495(93)81248-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Huang G., Santos-Sacchi J. Motility voltage sensor of the outer hair cell resides within the lateral plasma membrane. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12268–12272. doi: 10.1073/pnas.91.25.12268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hwang W. C., Waugh R. E. Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys J. 1997 Jun;72(6):2669–2678. doi: 10.1016/S0006-3495(97)78910-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Iwasa K. H. A membrane motor model for the fast motility of the outer hair cell. J Acoust Soc Am. 1994 Oct;96(4):2216–2224. doi: 10.1121/1.410094. [DOI] [PubMed] [Google Scholar]
  28. Kakehata S., Santos-Sacchi J. Effects of salicylate and lanthanides on outer hair cell motility and associated gating charge. J Neurosci. 1996 Aug 15;16(16):4881–4889. doi: 10.1523/JNEUROSCI.16-16-04881.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kalinec F., Holley M. C., Iwasa K. H., Lim D. J., Kachar B. A membrane-based force generation mechanism in auditory sensory cells. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8671–8675. doi: 10.1073/pnas.89.18.8671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kim K. S., Neu J., Oster G. Curvature-mediated interactions between membrane proteins. Biophys J. 1998 Nov;75(5):2274–2291. doi: 10.1016/S0006-3495(98)77672-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kubisch C., Schroeder B. C., Friedrich T., Lütjohann B., El-Amraoui A., Marlin S., Petit C., Jentsch T. J. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell. 1999 Feb 5;96(3):437–446. doi: 10.1016/s0092-8674(00)80556-5. [DOI] [PubMed] [Google Scholar]
  32. Lim D. J., Kalinec F. Cell and molecular basis of hearing. Kidney Int Suppl. 1998 Apr;65:S104–S113. [PubMed] [Google Scholar]
  33. Mosbacher J., Langer M., Hörber J. K., Sachs F. Voltage-dependent membrane displacements measured by atomic force microscopy. J Gen Physiol. 1998 Jan;111(1):65–74. doi: 10.1085/jgp.111.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mountain D. C., Hubbard A. E. A piezoelectric model of outer hair cell function. J Acoust Soc Am. 1994 Jan;95(1):350–354. doi: 10.1121/1.408273. [DOI] [PubMed] [Google Scholar]
  35. Méléard P., Gerbeaud C., Bardusco P., Jeandaine N., Mitov M. D., Fernandez-Puente L. Mechanical properties of model membranes studied from shape transformations of giant vesicles. Biochimie. 1998 May-Jun;80(5-6):401–413. doi: 10.1016/s0300-9084(00)80008-5. [DOI] [PubMed] [Google Scholar]
  36. Nobili R., Mammano F., Ashmore J. How well do we understand the cochlea? Trends Neurosci. 1998 Apr;21(4):159–167. doi: 10.1016/s0166-2236(97)01192-2. [DOI] [PubMed] [Google Scholar]
  37. Oghalai J. S., Patel A. A., Nakagawa T., Brownell W. E. Fluorescence-imaged microdeformation of the outer hair cell lateral wall. J Neurosci. 1998 Jan 1;18(1):48–58. doi: 10.1523/JNEUROSCI.18-01-00048.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Oghalai J. S., Tran T. D., Raphael R. M., Nakagawa T., Brownell W. E. Transverse and lateral mobility in outer hair cell lateral wall membranes. Hear Res. 1999 Sep;135(1-2):19–28. doi: 10.1016/s0378-5955(99)00077-5. [DOI] [PubMed] [Google Scholar]
  39. Oghalai J. S., Zhao H. B., Kutz J. W., Brownell W. E. Voltage- and tension-dependent lipid mobility in the outer hair cell plasma membrane. Science. 2000 Jan 28;287(5453):658–661. doi: 10.1126/science.287.5453.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Petrov A. G., Usherwood P. N. Mechanosensitivity of cell membranes. Ion channels, lipid matrix and cytoskeleton. Eur Biophys J. 1994;23(1):1–19. doi: 10.1007/BF00192201. [DOI] [PubMed] [Google Scholar]
  41. Raphael R. M., Waugh R. E. Accelerated interleaflet transport of phosphatidylcholine molecules in membranes under deformation. Biophys J. 1996 Sep;71(3):1374–1388. doi: 10.1016/S0006-3495(96)79340-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Reinhart W. H., Sung L. P., Sung K. L., Bernstein S. E., Chien S. Impaired echinocytic transformation of ankyrin- and spectrin-deficient erythrocytes in mice. Am J Hematol. 1988 Dec;29(4):195–200. doi: 10.1002/ajh.2830290404. [DOI] [PubMed] [Google Scholar]
  43. Saito K. Fine structure of the sensory epithelium of guinea-pig organ of Corti: subsurface cisternae and lamellar bodies in the outer hair cells. Cell Tissue Res. 1983;229(3):467–481. doi: 10.1007/BF00207692. [DOI] [PubMed] [Google Scholar]
  44. Santos-Sacchi J. Harmonics of outer hair cell motility. Biophys J. 1993 Nov;65(5):2217–2227. doi: 10.1016/S0006-3495(93)81247-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Santos-Sacchi J., Kakehata S., Kikuchi T., Katori Y., Takasaka T. Density of motility-related charge in the outer hair cell of the guinea pig is inversely related to best frequency. Neurosci Lett. 1998 Nov 13;256(3):155–158. doi: 10.1016/s0304-3940(98)00788-5. [DOI] [PubMed] [Google Scholar]
  46. Santos-Sacchi J. On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J Neurosci. 1992 May;12(5):1906–1916. doi: 10.1523/JNEUROSCI.12-05-01906.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Santos-Sacchi J. Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci. 1991 Oct;11(10):3096–3110. doi: 10.1523/JNEUROSCI.11-10-03096.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schmid-Schönbein G. W., Kosawada T., Skalak R., Chien S. Membrane model of endothelial cells and leukocytes. A proposal for the origin of a cortical stress. J Biomech Eng. 1995 May;117(2):171–178. doi: 10.1115/1.2795999. [DOI] [PubMed] [Google Scholar]
  49. Schneider M. B., Jenkins J. T., Webb W. W. Thermal fluctuations of large cylindrical phospholipid vesicles. Biophys J. 1984 May;45(5):891–899. doi: 10.1016/S0006-3495(84)84235-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Servuss R. M., Harbich W., Helfrich W. Measurement of the curvature-elastic modulus of egg lecithin bilayers. Biochim Biophys Acta. 1976 Jul 15;436(4):900–903. doi: 10.1016/0005-2736(76)90422-3. [DOI] [PubMed] [Google Scholar]
  51. Sit P. S., Spector A. A., Lue A. J., Popel A. S., Brownell W. E. Micropipette aspiration on the outer hair cell lateral wall. Biophys J. 1997 Jun;72(6):2812–2819. doi: 10.1016/S0006-3495(97)78923-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Smith C. A. Ultrastructure of the organ of Corti. Adv Sci. 1968 Jun;24(122):419–433. [PubMed] [Google Scholar]
  53. Song J., Waugh R. E. Bending rigidity of SOPC membranes containing cholesterol. Biophys J. 1993 Jun;64(6):1967–1970. doi: 10.1016/S0006-3495(93)81566-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Spector A. A., Brownell W. E., Popel A. S. Estimation of elastic moduli and bending stiffness of the anisotropic outer hair cell wall. J Acoust Soc Am. 1998 Feb;103(2):1007–1011. doi: 10.1121/1.421217. [DOI] [PubMed] [Google Scholar]
  55. Spector A. A., Brownell W. E., Popel A. S. Mechanical and electromotile characteristics of auditory outer hair cells. Med Biol Eng Comput. 1999 Mar;37(2):247–251. doi: 10.1007/BF02513294. [DOI] [PubMed] [Google Scholar]
  56. Spector A. A., Brownell W. E., Popel A. S. Nonlinear active force generation by cochlear outer hair cell. J Acoust Soc Am. 1999 Apr;105(4):2414–2420. doi: 10.1121/1.426846. [DOI] [PubMed] [Google Scholar]
  57. Spector A. A. Nonlinear electroelastic model for the composite outer hair cell wall. ORL J Otorhinolaryngol Relat Spec. 1999 Sep-Oct;61(5):287–293. doi: 10.1159/000027686. [DOI] [PubMed] [Google Scholar]
  58. Strey H., Peterson M., Sackmann E. Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. Biophys J. 1995 Aug;69(2):478–488. doi: 10.1016/S0006-3495(95)79921-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Sund S. E., Swanson J. A., Axelrod D. Cell membrane orientation visualized by polarized total internal reflection fluorescence. Biophys J. 1999 Oct;77(4):2266–2283. doi: 10.1016/S0006-3495(99)77066-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tolomeo J. A., Steele C. R., Holley M. C. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells. Biophys J. 1996 Jul;71(1):421–429. doi: 10.1016/S0006-3495(96)79244-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tolomeo J. A., Steele C. R. Orthotropic piezoelectric properties of the cochlear outer hair cell wall. J Acoust Soc Am. 1995 May;97(5 Pt 1):3006–3011. doi: 10.1121/1.411865. [DOI] [PubMed] [Google Scholar]
  62. Ulfendahl M., Slepecky N. Ultrastructural correlates of inner ear sensory cell shortening. J Submicrosc Cytol Pathol. 1988 Jan;20(1):47–51. [PubMed] [Google Scholar]
  63. Waugh R. E. Elastic energy of curvature-driven bump formation on red blood cell membrane. Biophys J. 1996 Feb;70(2):1027–1035. doi: 10.1016/S0006-3495(96)79648-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Waugh R. E., Song J., Svetina S., Zeks B. Local and nonlocal curvature elasticity in bilayer membranes by tether formation from lecithin vesicles. Biophys J. 1992 Apr;61(4):974–982. doi: 10.1016/S0006-3495(92)81904-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES