Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):2863–2877. doi: 10.1016/S0006-3495(00)76828-7

Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells.

T Lang 1, I Wacker 1, I Wunderlich 1, A Rohrbach 1, G Giese 1, T Soldati 1, W Almers 1
PMCID: PMC1300873  PMID: 10827968

Abstract

In neuroendocrine PC-12 cells, evanescent-field fluorescence microscopy was used to track motions of green fluorescent protein (GFP)-labeled actin or GFP-labeled secretory granules in a thin layer of cytoplasm where cells adhered to glass. The layer contained abundant filamentous actin (F-actin) locally condensed into stress fibers. More than 90% of the granules imaged lay within the F-actin layer. One-third of the granules did not move detectably, while two-thirds moved randomly; the average diffusion coefficient was 23 x 10(-4) microm(2)/s. A small minority (<3%) moved rapidly and in a directed fashion over distances more than a micron. Staining of F-actin suggests that such movement occurred along actin bundles. The seemingly random movement of most other granules was not due to diffusion since it was diminished by the myosin inhibitor butanedione monoxime, and blocked by chelating intracellular Mg(2+) and replacing ATP with AMP-PNP. Mobility was blocked also when F-actin was stabilized with phalloidin, and was diminished when the actin cortex was degraded with latrunculin B. We conclude that the movement of granules requires metabolic energy, and that it is mediated as well as limited by the actin cortex. Opposing actions of the actin cortex on mobility may explain why its degradation has variable effects on secretion.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayscough K. R., Stryker J., Pokala N., Sanders M., Crews P., Drubin D. G. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol. 1997 Apr 21;137(2):399–416. doi: 10.1083/jcb.137.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ballestrem C., Wehrle-Haller B., Imhof B. A. Actin dynamics in living mammalian cells. J Cell Sci. 1998 Jun;111(Pt 12):1649–1658. doi: 10.1242/jcs.111.12.1649. [DOI] [PubMed] [Google Scholar]
  3. Bi G. Q., Morris R. L., Liao G., Alderton J. M., Scholey J. M., Steinhardt R. A. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J Cell Biol. 1997 Sep 8;138(5):999–1008. doi: 10.1083/jcb.138.5.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burke N. V., Han W., Li D., Takimoto K., Watkins S. C., Levitan E. S. Neuronal peptide release is limited by secretory granule mobility. Neuron. 1997 Nov;19(5):1095–1102. doi: 10.1016/s0896-6273(00)80400-6. [DOI] [PubMed] [Google Scholar]
  5. Cheek T. R., Burgoyne R. D. Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS Lett. 1986 Oct 20;207(1):110–114. doi: 10.1016/0014-5793(86)80022-9. [DOI] [PubMed] [Google Scholar]
  6. Coluccio L. M., Tilney L. G. Phalloidin enhances actin assembly by preventing monomer dissociation. J Cell Biol. 1984 Aug;99(2):529–535. doi: 10.1083/jcb.99.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conibear P. B., Bagshaw C. R. Measurement of nucleotide exchange kinetics with isolated synthetic myosin filaments using flash photolysis. FEBS Lett. 1996 Feb 12;380(1-2):13–16. doi: 10.1016/0014-5793(95)01538-8. [DOI] [PubMed] [Google Scholar]
  8. Cramer L. P., Mitchison T. J. Myosin is involved in postmitotic cell spreading. J Cell Biol. 1995 Oct;131(1):179–189. doi: 10.1083/jcb.131.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Estes J. E., Selden L. A., Gershman L. C. Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry. 1981 Feb 17;20(4):708–712. doi: 10.1021/bi00507a006. [DOI] [PubMed] [Google Scholar]
  10. Evans L. L., Lee A. J., Bridgman P. C., Mooseker M. S. Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J Cell Sci. 1998 Jul 30;111(Pt 14):2055–2066. doi: 10.1242/jcs.111.14.2055. [DOI] [PubMed] [Google Scholar]
  11. Fath K. R., Burgess D. R. Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J Cell Biol. 1993 Jan;120(1):117–127. doi: 10.1083/jcb.120.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heumann R., Kachel V., Thoenen H. Relationship between NGF-mediated volume increase and "priming effect" in fast and slow reacting clones of PC12 pheochromocytoma cells. Role of cAMP. Exp Cell Res. 1983 Apr 15;145(1):179–190. doi: 10.1016/s0014-4827(83)80019-6. [DOI] [PubMed] [Google Scholar]
  13. Holz R. W., Bittner M. A., Peppers S. C., Senter R. A., Eberhard D. A. MgATP-independent and MgATP-dependent exocytosis. Evidence that MgATP primes adrenal chromaffin cells to undergo exocytosis. J Biol Chem. 1989 Apr 5;264(10):5412–5419. [PubMed] [Google Scholar]
  14. Jansen R. P., Dowzer C., Michaelis C., Galova M., Nasmyth K. Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell. 1996 Mar 8;84(5):687–697. doi: 10.1016/s0092-8674(00)81047-8. [DOI] [PubMed] [Google Scholar]
  15. Kaether C., Salm T., Glombik M., Almers W., Gerdes H. H. Targeting of green fluorescent protein to neuroendocrine secretory granules: a new tool for real time studies of regulated protein secretion. Eur J Cell Biol. 1997 Oct;74(2):133–142. [PubMed] [Google Scholar]
  16. Krendel M., Sgourdas G., Bonder E. M. Disassembly of actin filaments leads to increased rate and frequency of mitochondrial movement along microtubules. Cell Motil Cytoskeleton. 1998;40(4):368–378. doi: 10.1002/(SICI)1097-0169(1998)40:4<368::AID-CM5>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  17. Kusumi A., Sako Y., Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993 Nov;65(5):2021–2040. doi: 10.1016/S0006-3495(93)81253-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lang T., Wacker I., Steyer J., Kaether C., Wunderlich I., Soldati T., Gerdes H. H., Almers W. Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron. 1997 Jun;18(6):857–863. doi: 10.1016/s0896-6273(00)80325-6. [DOI] [PubMed] [Google Scholar]
  19. Luby-Phelps K., Castle P. E., Taylor D. L., Lanni F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4910–4913. doi: 10.1073/pnas.84.14.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Majlof L., Forsgren P. O. Confocal microscopy: important considerations for accurate imaging. Methods Cell Biol. 1993;38:79–95. doi: 10.1016/s0091-679x(08)61000-6. [DOI] [PubMed] [Google Scholar]
  21. Merrifield C. J., Moss S. E., Ballestrem C., Imhof B. A., Giese G., Wunderlich I., Almers W. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nat Cell Biol. 1999 May;1(1):72–74. doi: 10.1038/9048. [DOI] [PubMed] [Google Scholar]
  22. Mitchison T. J., Cramer L. P. Actin-based cell motility and cell locomotion. Cell. 1996 Feb 9;84(3):371–379. doi: 10.1016/s0092-8674(00)81281-7. [DOI] [PubMed] [Google Scholar]
  23. Morita K., Oka M., Hamano S. Effects of cytoskeleton-disrupting drugs on ouabain-stimulated catecholamine secretion from cultured adrenal chromaffin cells. Biochem Pharmacol. 1988 Sep 1;37(17):3357–3359. doi: 10.1016/0006-2952(88)90650-8. [DOI] [PubMed] [Google Scholar]
  24. Muallem S., Kwiatkowska K., Xu X., Yin H. L. Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol. 1995 Feb;128(4):589–598. doi: 10.1083/jcb.128.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakata T., Hirokawa N. Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. J Neurosci. 1992 Jun;12(6):2186–2197. doi: 10.1523/JNEUROSCI.12-06-02186.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oheim M., Loerke D., Stühmer W., Chow R. H. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J. 1998;27(2):83–98. doi: 10.1007/s002490050114. [DOI] [PubMed] [Google Scholar]
  27. Parsons T. D., Coorssen J. R., Horstmann H., Almers W. Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron. 1995 Nov;15(5):1085–1096. doi: 10.1016/0896-6273(95)90097-7. [DOI] [PubMed] [Google Scholar]
  28. Prekeris R., Terrian D. M. Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J Cell Biol. 1997 Jun 30;137(7):1589–1601. doi: 10.1083/jcb.137.7.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Qian H., Sheetz M. P., Elson E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J. 1991 Oct;60(4):910–921. doi: 10.1016/S0006-3495(91)82125-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sampath P., Pollard T. D. Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments. Biochemistry. 1991 Feb 19;30(7):1973–1980. doi: 10.1021/bi00221a034. [DOI] [PubMed] [Google Scholar]
  31. Schatten G., Schatten H., Spector I., Cline C., Paweletz N., Simerly C., Petzelt C. Latrunculin inhibits the microfilament-mediated processes during fertilization, cleavage and early development in sea urchins and mice. Exp Cell Res. 1986 Sep;166(1):191–208. doi: 10.1016/0014-4827(86)90519-7. [DOI] [PubMed] [Google Scholar]
  32. Small J. V. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J Cell Biol. 1981 Dec;91(3 Pt 1):695–705. doi: 10.1083/jcb.91.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sontag J. M., Aunis D., Bader M. F. Peripheral actin filaments control calcium-mediated catecholamine release from streptolysin-O-permeabilized chromaffin cells. Eur J Cell Biol. 1988 Jun;46(2):316–326. [PubMed] [Google Scholar]
  34. Spector I., Shochet N. R., Kashman Y., Groweiss A. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science. 1983 Feb 4;219(4584):493–495. doi: 10.1126/science.6681676. [DOI] [PubMed] [Google Scholar]
  35. Steyer J. A., Almers W. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys J. 1999 Apr;76(4):2262–2271. doi: 10.1016/S0006-3495(99)77382-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Steyer J. A., Horstmann H., Almers W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature. 1997 Jul 31;388(6641):474–478. doi: 10.1038/41329. [DOI] [PubMed] [Google Scholar]
  37. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  38. Theriot J. A., Mitchison T. J., Tilney L. G., Portnoy D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature. 1992 May 21;357(6375):257–260. doi: 10.1038/357257a0. [DOI] [PubMed] [Google Scholar]
  39. Tokunaga M., Kitamura K., Saito K., Iwane A. H., Yanagida T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun. 1997 Jun 9;235(1):47–53. doi: 10.1006/bbrc.1997.6732. [DOI] [PubMed] [Google Scholar]
  40. Tooze S. A., Flatmark T., Tooze J., Huttner W. B. Characterization of the immature secretory granule, an intermediate in granule biogenesis. J Cell Biol. 1991 Dec;115(6):1491–1503. doi: 10.1083/jcb.115.6.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Trifaró J. M., Vitale M. L. Cytoskeleton dynamics during neurotransmitter release. Trends Neurosci. 1993 Nov;16(11):466–472. doi: 10.1016/0166-2236(93)90079-2. [DOI] [PubMed] [Google Scholar]
  42. Vandekerckhove J., Deboben A., Nassal M., Wieland T. The phalloidin binding site of F-actin. EMBO J. 1985 Nov;4(11):2815–2818. doi: 10.1002/j.1460-2075.1985.tb04008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vitale M. L., Rodríguez Del Castillo A., Tchakarov L., Trifaró J. M. Cortical filamentous actin disassembly and scinderin redistribution during chromaffin cell stimulation precede exocytosis, a phenomenon not exhibited by gelsolin. J Cell Biol. 1991 Jun;113(5):1057–1067. doi: 10.1083/jcb.113.5.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vitale M. L., Seward E. P., Trifaró J. M. Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron. 1995 Feb;14(2):353–363. doi: 10.1016/0896-6273(95)90291-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES