Abstract
A homology model has been generated for the pore-forming domain of Kir6.2, a component of an ATP-sensitive K channel, based on the x-ray structure of the bacterial channel KcsA. Analysis of the lipid-exposed and pore-lining surfaces of the model reveals them to be compatible with the known features of membrane proteins and Kir channels, respectively. The Kir6.2 homology model was used as the starting point for nanosecond-duration molecular dynamics simulations in a solvated phospholipid bilayer. The overall drift from the model structure was comparable to that seen for KcsA in previous similar simulations. Preliminary analysis of the interactions of the Kir6.2 channel model with K(+) ions and water molecules during these simulations suggests that concerted single-file motion of K(+) ions and water through the selectivity filter occurs. This is similar to such motion observed in simulations of KcsA. This suggests that a single-filing mechanism is conserved between different K channel structures and may be robust to changes in simulation details. Comparison of Kir6.2 and KcsA suggests some degree of flexibility in the filter, thus complicating models of ion selectivity based upon a rigid filter.
Full Text
The Full Text of this article is available as a PDF (575.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adcock C., Smith G. R., Sansom M. S. Electrostatics and the ion selectivity of ligand-gated channels. Biophys J. 1998 Sep;75(3):1211–1222. doi: 10.1016/S0006-3495(98)74040-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
- Barton G. J., Sternberg M. J. Flexible protein sequence patterns. A sensitive method to detect weak structural similarities. J Mol Biol. 1990 Mar 20;212(2):389–402. doi: 10.1016/0022-2836(90)90133-7. [DOI] [PubMed] [Google Scholar]
- Berger O., Edholm O., Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997 May;72(5):2002–2013. doi: 10.1016/S0006-3495(97)78845-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choe S., Kreusch A., Pfaffinger P. J. Towards the three-dimensional structure of voltage-gated potassium channels. Trends Biochem Sci. 1999 Sep;24(9):345–349. doi: 10.1016/s0968-0004(99)01440-1. [DOI] [PubMed] [Google Scholar]
- Cserzö M., Wallin E., Simon I., von Heijne G., Elofsson A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 1997 Jun;10(6):673–676. doi: 10.1093/protein/10.6.673. [DOI] [PubMed] [Google Scholar]
- Donnelly D., Overington J. P., Ruffle S. V., Nugent J. H., Blundell T. L. Modeling alpha-helical transmembrane domains: the calculation and use of substitution tables for lipid-facing residues. Protein Sci. 1993 Jan;2(1):55–70. doi: 10.1002/pro.5560020106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doupnik C. A., Davidson N., Lester H. A. The inward rectifier potassium channel family. Curr Opin Neurobiol. 1995 Jun;5(3):268–277. doi: 10.1016/0959-4388(95)80038-7. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Durell S. R., Guy H. R. Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel. Biophys J. 1999 Aug;77(2):789–807. doi: 10.1016/S0006-3495(99)76932-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forrest L. R., Kukol A., Arkin I. T., Tieleman D. P., Sansom M. S. Exploring models of the influenza A M2 channel: MD simulations in a phospholipid bilayer. Biophys J. 2000 Jan;78(1):55–69. doi: 10.1016/s0006-3495(00)76572-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forrest L. R., Tieleman D. P., Sansom M. S. Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer. Biophys J. 1999 Apr;76(4):1886–1896. doi: 10.1016/s0006-3495(99)77347-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guidoni L., Torre V., Carloni P. Potassium and sodium binding to the outer mouth of the K+ channel. Biochemistry. 1999 Jul 6;38(27):8599–8604. doi: 10.1021/bi990540c. [DOI] [PubMed] [Google Scholar]
- Imredy J. P., Chen C., MacKinnon R. A snake toxin inhibitor of inward rectifier potassium channel ROMK1. Biochemistry. 1998 Oct 20;37(42):14867–14874. doi: 10.1021/bi980929k. [DOI] [PubMed] [Google Scholar]
- Jin W., Klem A. M., Lewis J. H., Lu Z. Mechanisms of inward-rectifier K+ channel inhibition by tertiapin-Q. Biochemistry. 1999 Oct 26;38(43):14294–14301. doi: 10.1021/bi991206j. [DOI] [PubMed] [Google Scholar]
- Jin W., Lu Z. A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry. 1998 Sep 22;37(38):13291–13299. doi: 10.1021/bi981178p. [DOI] [PubMed] [Google Scholar]
- Jones D. T., Taylor W. R., Thornton J. M. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry. 1994 Mar 15;33(10):3038–3049. doi: 10.1021/bi00176a037. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Koster J. C., Bentle K. A., Nichols C. G., Ho K. Assembly of ROMK1 (Kir 1.1a) inward rectifier K+ channel subunits involves multiple interaction sites. Biophys J. 1998 Apr;74(4):1821–1829. doi: 10.1016/S0006-3495(98)77892-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Holmgren M., Jurman M. E., Yellen G. Gated access to the pore of a voltage-dependent K+ channel. Neuron. 1997 Jul;19(1):175–184. doi: 10.1016/s0896-6273(00)80357-8. [DOI] [PubMed] [Google Scholar]
- Lu T., Nguyen B., Zhang X., Yang J. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron. 1999 Mar;22(3):571–580. doi: 10.1016/s0896-6273(00)80711-4. [DOI] [PubMed] [Google Scholar]
- Lu Z., MacKinnon R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature. 1994 Sep 15;371(6494):243–246. doi: 10.1038/371243a0. [DOI] [PubMed] [Google Scholar]
- Marrink S. J., Berger O., Tieleman P., Jähnig F. Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. Biophys J. 1998 Feb;74(2 Pt 1):931–943. doi: 10.1016/S0006-3495(98)74016-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minor D. L., Jr, Masseling S. J., Jan Y. N., Jan L. Y. Transmembrane structure of an inwardly rectifying potassium channel. Cell. 1999 Mar 19;96(6):879–891. doi: 10.1016/s0092-8674(00)80597-8. [DOI] [PubMed] [Google Scholar]
- Mongan N. P., Baylis H. A., Adcock C., Smith G. R., Sansom M. S., Sattelle D. B. An extensive and diverse gene family of nicotinic acetylcholine receptor alpha subunits in Caenorhabditis elegans. Receptors Channels. 1998;6(3):213–228. [PubMed] [Google Scholar]
- Morris A. L., MacArthur M. W., Hutchinson E. G., Thornton J. M. Stereochemical quality of protein structure coordinates. Proteins. 1992 Apr;12(4):345–364. doi: 10.1002/prot.340120407. [DOI] [PubMed] [Google Scholar]
- Perozo E., Cortes D. M., Cuello L. G. Structural rearrangements underlying K+-channel activation gating. Science. 1999 Jul 2;285(5424):73–78. doi: 10.1126/science.285.5424.73. [DOI] [PubMed] [Google Scholar]
- Perozo E., Cortes D. M., Cuello L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol. 1998 Jun;5(6):459–469. doi: 10.1038/nsb0698-459. [DOI] [PubMed] [Google Scholar]
- Persson B., Argos P. Prediction of membrane protein topology utilizing multiple sequence alignments. J Protein Chem. 1997 Jul;16(5):453–457. doi: 10.1023/a:1026353225758. [DOI] [PubMed] [Google Scholar]
- Persson B., Argos P. Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol. 1994 Mar 25;237(2):182–192. doi: 10.1006/jmbi.1994.1220. [DOI] [PubMed] [Google Scholar]
- Ranatunga K. M., Kerr I. D., Adcock C., Smith G. R., Sansom M. S. Protein-water-ion interactions in a model of the pore domain of a potassium channel: a simulation study. Biochim Biophys Acta. 1998 Mar 6;1370(1):1–7. doi: 10.1016/s0005-2736(97)00271-x. [DOI] [PubMed] [Google Scholar]
- Reimann F., Ashcroft F. M. Inwardly rectifying potassium channels. Curr Opin Cell Biol. 1999 Aug;11(4):503–508. doi: 10.1016/S0955-0674(99)80073-8. [DOI] [PubMed] [Google Scholar]
- Repunte V. P., Nakamura H., Fujita A., Horio Y., Findlay I., Pott L., Kurachi Y. Extracellular links in Kir subunits control the unitary conductance of SUR/Kir6.0 ion channels. EMBO J. 1999 Jun 15;18(12):3317–3324. doi: 10.1093/emboj/18.12.3317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rost B., Fariselli P., Casadio R. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 1996 Aug;5(8):1704–1718. doi: 10.1002/pro.5560050824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roux B., MacKinnon R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science. 1999 Jul 2;285(5424):100–102. doi: 10.1126/science.285.5424.100. [DOI] [PubMed] [Google Scholar]
- Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
- Schiffer M., Chang C. H., Stevens F. J. The functions of tryptophan residues in membrane proteins. Protein Eng. 1992 Apr;5(3):213–214. doi: 10.1093/protein/5.3.213. [DOI] [PubMed] [Google Scholar]
- Shrivastava I. H., Capener C. E., Forrest L. R., Sansom M. S. Structure and dynamics of K channel pore-lining helices: a comparative simulation study. Biophys J. 2000 Jan;78(1):79–92. doi: 10.1016/S0006-3495(00)76574-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shrivastava I. H., Sansom M. S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J. 2000 Feb;78(2):557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silverman S. K., Lester H. A., Dougherty D. A. Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel. Biophys J. 1998 Sep;75(3):1330–1339. doi: 10.1016/S0006-3495(98)74051-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smart O. S., Breed J., Smith G. R., Sansom M. S. A novel method for structure-based prediction of ion channel conductance properties. Biophys J. 1997 Mar;72(3):1109–1126. doi: 10.1016/S0006-3495(97)78760-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smart O. S., Goodfellow J. M., Wallace B. A. The pore dimensions of gramicidin A. Biophys J. 1993 Dec;65(6):2455–2460. doi: 10.1016/S0006-3495(93)81293-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieleman D. P., Berendsen H. J. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J. 1998 Jun;74(6):2786–2801. doi: 10.1016/S0006-3495(98)77986-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieleman D. P., Berendsen H. J., Sansom M. S. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J. 1999 Apr;76(4):1757–1769. doi: 10.1016/s0006-3495(99)77337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieleman D. P., Sansom M. S., Berendsen H. J. Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. Biophys J. 1999 Jan;76(1 Pt 1):40–49. doi: 10.1016/S0006-3495(99)77176-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tucker S. J., Gribble F. M., Zhao C., Trapp S., Ashcroft F. M. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature. 1997 May 8;387(6629):179–183. doi: 10.1038/387179a0. [DOI] [PubMed] [Google Scholar]
- Wible B. A., Taglialatela M., Ficker E., Brown A. M. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature. 1994 Sep 15;371(6494):246–249. doi: 10.1038/371246a0. [DOI] [PubMed] [Google Scholar]
- Yang J., Yu M., Jan Y. N., Jan L. Y. Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1568–1572. doi: 10.1073/pnas.94.4.1568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yau W. M., Wimley W. C., Gawrisch K., White S. H. The preference of tryptophan for membrane interfaces. Biochemistry. 1998 Oct 20;37(42):14713–14718. doi: 10.1021/bi980809c. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]