Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):2973–2982. doi: 10.1016/S0006-3495(00)76836-6

Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.

P Linsdell 1, A Evagelidis 1, J W Hanrahan 1
PMCID: PMC1300881  PMID: 10827976

Abstract

Ionic selectivity in many cation channels is achieved over a short region of the pore known as the selectivity filter, the molecular determinants of which have been identified in Ca(2+), Na(+), and K(+) channels. However, a filter controlling selectivity among different anions has not previously been identified in any Cl(-) channel. In fact, because Cl(-) channels are only weakly selective among small anions, and because their selectivity has proved so resistant to site-directed mutagenesis, the very existence of a discrete anion selectivity filter has been called into question. Here we show that mutation of a putative pore-lining phenylalanine residue, F337, in the sixth membrane-spanning region of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, dramatically alters the relative permeabilities of different anions in the channel. Specifically, mutations that reduce the size of the amino acid side chain present at this position virtually abolish the relationship between anion permeability and hydration energy, a relationship that characterizes the anion selectivity not only of wild-type CFTR, but of most classes of Cl(-) channels. These results suggest that the pore of CFTR may indeed contain a specialized region, analogous to the selectivity filter of cation channels, at which discrimination between different permeant anions takes place. Because F337 is adjacent to another amino acid residue, T338, which also affects anion selectivity in CFTR, we suggest that selectivity is predominantly determined over a physically discrete region of the pore located near these important residues.

Full Text

The Full Text of this article is available as a PDF (145.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akabas M. H. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator. Biochemistry. 1998 Sep 1;37(35):12233–12240. doi: 10.1021/bi980969o. [DOI] [PubMed] [Google Scholar]
  2. Akabas M. H., Kaufmann C., Cook T. A., Archdeacon P. Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1994 May 27;269(21):14865–14868. [PubMed] [Google Scholar]
  3. Almers W., McCleskey E. W. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiol. 1984 Aug;353:585–608. doi: 10.1113/jphysiol.1984.sp015352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson M. P., Gregory R. J., Thompson S., Souza D. W., Paul S., Mulligan R. C., Smith A. E., Welsh M. J. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science. 1991 Jul 12;253(5016):202–205. doi: 10.1126/science.1712984. [DOI] [PubMed] [Google Scholar]
  5. Arreola J., Melvin J. E., Begenisich T. Volume-activated chloride channels in rat parotid acinar cells. J Physiol. 1995 May 1;484(Pt 3):677–687. doi: 10.1113/jphysiol.1995.sp020695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bormann J., Hamill O. P., Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol. 1987 Apr;385:243–286. doi: 10.1113/jphysiol.1987.sp016493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cacace M. G., Landau E. M., Ramsden J. J. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys. 1997 Aug;30(3):241–277. doi: 10.1017/s0033583597003363. [DOI] [PubMed] [Google Scholar]
  8. Cheung M., Akabas M. H. Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment. Biophys J. 1996 Jun;70(6):2688–2695. doi: 10.1016/S0006-3495(96)79838-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collins K. D. Charge density-dependent strength of hydration and biological structure. Biophys J. 1997 Jan;72(1):65–76. doi: 10.1016/S0006-3495(97)78647-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Collins K. D., Washabaugh M. W. The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys. 1985 Nov;18(4):323–422. doi: 10.1017/s0033583500005369. [DOI] [PubMed] [Google Scholar]
  11. Dani J. A., Sanchez J. A., Hille B. Lyotropic anions. Na channel gating and Ca electrode response. J Gen Physiol. 1983 Feb;81(2):255–281. doi: 10.1085/jgp.81.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dawson D. C., Smith S. S., Mansoura M. K. CFTR: mechanism of anion conduction. Physiol Rev. 1999 Jan;79(1 Suppl):S47–S75. doi: 10.1152/physrev.1999.79.1.S47. [DOI] [PubMed] [Google Scholar]
  13. Dorman V., Partenskii M. B., Jordan P. C. A semi-microscopic Monte Carlo study of permeation energetics in a gramicidin-like channel: the origin of cation selectivity. Biophys J. 1996 Jan;70(1):121–134. doi: 10.1016/S0006-3495(96)79554-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  15. Eisenman G., Horn R. Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol. 1983;76(3):197–225. doi: 10.1007/BF01870364. [DOI] [PubMed] [Google Scholar]
  16. Ellinor P. T., Yang J., Sather W. A., Zhang J. F., Tsien R. W. Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron. 1995 Nov;15(5):1121–1132. doi: 10.1016/0896-6273(95)90100-0. [DOI] [PubMed] [Google Scholar]
  17. Fahlke C., Yu H. T., Beck C. L., Rhodes T. H., George A. L., Jr Pore-forming segments in voltage-gated chloride channels. Nature. 1997 Dec 4;390(6659):529–532. doi: 10.1038/37391. [DOI] [PubMed] [Google Scholar]
  18. Favre I., Moczydlowski E., Schild L. On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J. 1996 Dec;71(6):3110–3125. doi: 10.1016/S0006-3495(96)79505-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Giraldez F., Murray K. J., Sepúlveda F. V., Sheppard D. N. Characterization of a phosphorylation-activated Cl-selective channel in isolated Necturus enterocytes. J Physiol. 1989 Sep;416:517–537. doi: 10.1113/jphysiol.1989.sp017775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Guinamard R., Akabas M. H. Arg352 is a major determinant of charge selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel. Biochemistry. 1999 Apr 27;38(17):5528–5537. doi: 10.1021/bi990155n. [DOI] [PubMed] [Google Scholar]
  21. Halm D. R., Frizzell R. A. Anion permeation in an apical membrane chloride channel of a secretory epithelial cell. J Gen Physiol. 1992 Mar;99(3):339–366. doi: 10.1085/jgp.99.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hanrahan J. W., Kone Z., Mathews C. J., Luo J., Jia Y., Linsdell P. Patch-clamp studies of cystic fibrosis transmembrane conductance regulator chloride channel. Methods Enzymol. 1998;293:169–194. doi: 10.1016/s0076-6879(98)93014-2. [DOI] [PubMed] [Google Scholar]
  23. Heginbotham L., Lu Z., Abramson T., MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J. 1994 Apr;66(4):1061–1067. doi: 10.1016/S0006-3495(94)80887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Heinemann S. H., Terlau H., Stühmer W., Imoto K., Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature. 1992 Apr 2;356(6368):441–443. doi: 10.1038/356441a0. [DOI] [PubMed] [Google Scholar]
  25. Hess P., Tsien R. W. Mechanism of ion permeation through calcium channels. 1984 May 31-Jun 6Nature. 309(5967):453–456. doi: 10.1038/309453a0. [DOI] [PubMed] [Google Scholar]
  26. Hipper A., Mall M., Greger R., Kunzelmann K. Mutations in the putative pore-forming domain of CFTR do not change anion selectivity of the cAMP activated Cl- conductance. FEBS Lett. 1995 Nov 6;374(3):312–316. doi: 10.1016/0014-5793(95)01132-x. [DOI] [PubMed] [Google Scholar]
  27. Jackson P. S., Churchwell K., Ballatori N., Boyer J. L., Strange K. Swelling-activated anion conductance in skate hepatocytes: regulation by cell Cl- and ATP. Am J Physiol. 1996 Jan;270(1 Pt 1):C57–C66. doi: 10.1152/ajpcell.1996.270.1.C57. [DOI] [PubMed] [Google Scholar]
  28. Kubo M., Okada Y. Volume-regulatory Cl- channel currents in cultured human epithelial cells. J Physiol. 1992 Oct;456:351–371. doi: 10.1113/jphysiol.1992.sp019340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Laio A., Torre V. Physical origin of selectivity in ionic channels of biological membranes. Biophys J. 1999 Jan;76(1 Pt 1):129–148. doi: 10.1016/S0006-3495(99)77184-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Li M., McCann J. D., Welsh M. J. Apical membrane Cl- channels in airway epithelia: anion selectivity and effect of an inhibitor. Am J Physiol. 1990 Aug;259(2 Pt 1):C295–C301. doi: 10.1152/ajpcell.1990.259.2.C295. [DOI] [PubMed] [Google Scholar]
  31. Linsdell P., Hanrahan J. W. Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J Gen Physiol. 1998 Apr;111(4):601–614. doi: 10.1085/jgp.111.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Linsdell P., Hanrahan J. W. Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a mammalian cell line and its regulation by a critical pore residue. J Physiol. 1996 Nov 1;496(Pt 3):687–693. doi: 10.1113/jphysiol.1996.sp021719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Linsdell P., Hanrahan J. W. Glutathione permeability of CFTR. Am J Physiol. 1998 Jul;275(1 Pt 1):C323–C326. doi: 10.1152/ajpcell.1998.275.1.C323. [DOI] [PubMed] [Google Scholar]
  34. Linsdell P., Tabcharani J. A., Rommens J. M., Hou Y. X., Chang X. B., Tsui L. C., Riordan J. R., Hanrahan J. W. Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J Gen Physiol. 1997 Oct;110(4):355–364. doi: 10.1085/jgp.110.4.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Linsdell P., Zheng S. X., Hanrahan J. W. Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl- channel expressed in mammalian cell lines. J Physiol. 1998 Oct 1;512(Pt 1):1–16. doi: 10.1111/j.1469-7793.1998.001bf.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mansoura M. K., Smith S. S., Choi A. D., Richards N. W., Strong T. V., Drumm M. L., Collins F. S., Dawson D. C. Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore. Biophys J. 1998 Mar;74(3):1320–1332. doi: 10.1016/S0006-3495(98)77845-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. McDonough S., Davidson N., Lester H. A., McCarty N. A. Novel pore-lining residues in CFTR that govern permeation and open-channel block. Neuron. 1994 Sep;13(3):623–634. doi: 10.1016/0896-6273(94)90030-2. [DOI] [PubMed] [Google Scholar]
  38. Richards F. M. The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol. 1974 Jan 5;82(1):1–14. doi: 10.1016/0022-2836(74)90570-1. [DOI] [PubMed] [Google Scholar]
  39. Rychkov G. Y., Pusch M., Roberts M. L., Jentsch T. J., Bretag A. H. Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J Gen Physiol. 1998 May;111(5):653–665. doi: 10.1085/jgp.111.5.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sheppard D. N., Rich D. P., Ostedgaard L. S., Gregory R. J., Smith A. E., Welsh M. J. Mutations in CFTR associated with mild-disease-form Cl- channels with altered pore properties. Nature. 1993 Mar 11;362(6416):160–164. doi: 10.1038/362160a0. [DOI] [PubMed] [Google Scholar]
  41. Sheppard D. N., Travis S. M., Ishihara H., Welsh M. J. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem. 1996 Jun 21;271(25):14995–15001. doi: 10.1074/jbc.271.25.14995. [DOI] [PubMed] [Google Scholar]
  42. Sun Y. M., Favre I., Schild L., Moczydlowski E. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J Gen Physiol. 1997 Dec;110(6):693–715. doi: 10.1085/jgp.110.6.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tabcharani J. A., Chang X. B., Riordan J. R., Hanrahan J. W. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature. 1991 Aug 15;352(6336):628–631. doi: 10.1038/352628a0. [DOI] [PubMed] [Google Scholar]
  44. Tabcharani J. A., Linsdell P., Hanrahan J. W. Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels. J Gen Physiol. 1997 Oct;110(4):341–354. doi: 10.1085/jgp.110.4.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tabcharani J. A., Rommens J. M., Hou Y. X., Chang X. B., Tsui L. C., Riordan J. R., Hanrahan J. W. Multi-ion pore behaviour in the CFTR chloride channel. Nature. 1993 Nov 4;366(6450):79–82. doi: 10.1038/366079a0. [DOI] [PubMed] [Google Scholar]
  46. Vankeerberghen A., Wei L., Teng H., Jaspers M., Cassiman J. J., Nilius B., Cuppens H. Characterization of mutations located in exon 18 of the CFTR gene. FEBS Lett. 1998 Oct 16;437(1-2):1–4. doi: 10.1016/s0014-5793(98)01042-4. [DOI] [PubMed] [Google Scholar]
  47. Verdon B., Winpenny J. P., Whitfield K. J., Argent B. E., Gray M. A. Volume-activated chloride currents in pancreatic duct cells. J Membr Biol. 1995 Sep;147(2):173–183. doi: 10.1007/BF00233545. [DOI] [PubMed] [Google Scholar]
  48. Wright E. M., Diamond J. M. Anion selectivity in biological systems. Physiol Rev. 1977 Jan;57(1):109–156. doi: 10.1152/physrev.1977.57.1.109. [DOI] [PubMed] [Google Scholar]
  49. Yang J., Ellinor P. T., Sather W. A., Zhang J. F., Tsien R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature. 1993 Nov 11;366(6451):158–161. doi: 10.1038/366158a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES