Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3011–3018. doi: 10.1016/S0006-3495(00)76839-1

Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization.

D Huster 1, K Arnold 1, K Gawrisch 1
PMCID: PMC1300884  PMID: 10827979

Abstract

There is evidence that membranes of rod outer segment (ROS) disks are a high-affinity Ca(2+) binding site. We were interested to see if the high occurrence of sixfold unsaturated docosahexaenoic acid in ROS lipids influences Ca(2+)-membrane interaction. Ca(2+) binding to polyunsaturated model membranes that mimic the lipid composition of ROS was studied by microelectrophoresis and (2)H NMR. Ca(2+) association constants of polyunsaturated membranes were found to be a factor of approximately 2 smaller than constants of monounsaturated membranes. Furthermore, strength of Ca(2+) binding to monounsaturated membranes increased with the addition of cholesterol, while binding to polyunsaturated lipids was unaffected. The data suggest that the lipid phosphate groups of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) in PC/PE/PS (4:4:1, mol/mol) are primary targets for Ca(2+). Negatively charged serine in PS controls Ca (2+) binding by lowering the electric surface potential and elevating cation concentration at the membrane/water interface. The influence of hydrocarbon chain unsaturation on Ca(2+) binding is secondary compared to membrane PS content. Order parameter analysis of individual lipids in the mixture revealed that Ca(2+) ions did not trigger lateral phase separation of lipid species as long as all lipids remained liquid-crystalline. However, depending on temperature and hydrocarbon chain unsaturation, the lipid with the highest chain melting temperature converted to the gel state, as observed for the monounsaturated phosphatidylethanolamine (PE) in PC/PE/PS (4:4:1, mol/mol) at 25 degrees C.

Full Text

The Full Text of this article is available as a PDF (87.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert A. D., Young J. E., Yeagle P. L. Rhodopsin-cholesterol interactions in bovine rod outer segment disk membranes. Biochim Biophys Acta. 1996 Nov 13;1285(1):47–55. doi: 10.1016/s0005-2736(96)00145-9. [DOI] [PubMed] [Google Scholar]
  2. Altenbach C., Seelig J. Ca2+ binding to phosphatidylcholine bilayers as studied by deuterium magnetic resonance. Evidence for the formation of a Ca2+ complex with two phospholipid molecules. Biochemistry. 1984 Aug 14;23(17):3913–3920. doi: 10.1021/bi00312a019. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Bootman M. D., Lipp P. Calcium--a life and death signal. Nature. 1998 Oct 15;395(6703):645–648. doi: 10.1038/27094. [DOI] [PubMed] [Google Scholar]
  4. Casal H. L., Mantsch H. H., Hauser H. Infrared and 31P-NMR studies of the interaction of Mg2+ with phosphatidylserines: effect of hydrocarbon chain unsaturation. Biochim Biophys Acta. 1989 Jul 10;982(2):228–236. doi: 10.1016/0005-2736(89)90059-x. [DOI] [PubMed] [Google Scholar]
  5. Casal H. L., Mantsch H. H., Hauser H. Infrared studies of fully hydrated saturated phosphatidylserine bilayers. Effect of Li+ and Ca2+. Biochemistry. 1987 Jul 14;26(14):4408–4416. doi: 10.1021/bi00388a033. [DOI] [PubMed] [Google Scholar]
  6. Chapman D., Peel W. E., Kingston B., Lilley T. H. Lipid phase transitions in model biomembranes. The effect of ions on phosphatidylcholine bilayers. Biochim Biophys Acta. 1977 Jan 21;464(2):260–275. doi: 10.1016/0005-2736(77)90002-5. [DOI] [PubMed] [Google Scholar]
  7. Coorssen J. R., Rand R. P. Structural effects of neutral lipids on divalent cation-induced interactions of phosphatidylserine-containing bilayers. Biophys J. 1995 Mar;68(3):1009–1018. doi: 10.1016/S0006-3495(95)80276-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feigenson G. W. Calcium ion binding between lipid bilayers: the four-component system of phosphatidylserine, phosphatidylcholine, calcium chloride, and water. Biochemistry. 1989 Feb 7;28(3):1270–1278. doi: 10.1021/bi00429a048. [DOI] [PubMed] [Google Scholar]
  9. Fliesler S. J., Anderson R. E. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res. 1983;22(2):79–131. doi: 10.1016/0163-7827(83)90004-8. [DOI] [PubMed] [Google Scholar]
  10. Hauser H., Shipley G. G. Interactions of divalent cations with phosphatidylserine bilayer membranes. Biochemistry. 1984 Jan 3;23(1):34–41. doi: 10.1021/bi00296a006. [DOI] [PubMed] [Google Scholar]
  11. Holte L. L., Peter S. A., Sinnwell T. M., Gawrisch K. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. Biophys J. 1995 Jun;68(6):2396–2403. doi: 10.1016/S0006-3495(95)80422-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hsu Y. T., Molday R. S. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature. 1993 Jan 7;361(6407):76–79. doi: 10.1038/361076a0. [DOI] [PubMed] [Google Scholar]
  13. Huster D., Arnold K., Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry. 1998 Dec 8;37(49):17299–17308. doi: 10.1021/bi980078g. [DOI] [PubMed] [Google Scholar]
  14. Huster D., Jin A. J., Arnold K., Gawrisch K. Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophys J. 1997 Aug;73(2):855–864. doi: 10.1016/S0006-3495(97)78118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ichikawa K. Critical processes which characterize the photocurrent of retinal rod outer segments to flash stimuli. Neurosci Res. 1994 Mar;19(2):201–212. doi: 10.1016/0168-0102(94)90144-9. [DOI] [PubMed] [Google Scholar]
  16. Ichikawa K. Modeling and analysis of spatio-temporal change in [Ca2+]i in a retinal rod outer segment. Neurosci Res. 1996 Jun;25(2):137–144. doi: 10.1016/0168-0102(96)01035-8. [DOI] [PubMed] [Google Scholar]
  17. Kawamura S. Light-sensitivity modulating protein in frog rods. Photochem Photobiol. 1992 Dec;56(6):1173–1180. doi: 10.1111/j.1751-1097.1992.tb09742.x. [DOI] [PubMed] [Google Scholar]
  18. Koch K. W., Stryer L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature. 1988 Jul 7;334(6177):64–66. doi: 10.1038/334064a0. [DOI] [PubMed] [Google Scholar]
  19. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lafleur M., Fine B., Sternin E., Cullis P. R., Bloom M. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys J. 1989 Nov;56(5):1037–1041. doi: 10.1016/S0006-3495(89)82749-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McLaughlin S., Brown J. Diffusion of calcium ions in retinal rods. A theoretical calculation. J Gen Physiol. 1981 Apr;77(4):475–487. doi: 10.1085/jgp.77.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McLaughlin S., Mulrine N., Gresalfi T., Vaio G., McLaughlin A. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J Gen Physiol. 1981 Apr;77(4):445–473. doi: 10.1085/jgp.77.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ohki S., Düzgüneş N., Leonards K. Phospholipid vesicle aggregation: effect of monovalent and divalent ions. Biochemistry. 1982 Apr 27;21(9):2127–2133. doi: 10.1021/bi00538a022. [DOI] [PubMed] [Google Scholar]
  24. Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  25. Salem N., Jr, Niebylski C. D. The nervous system has an absolute molecular species requirement for proper function. Mol Membr Biol. 1995 Jan-Mar;12(1):131–134. doi: 10.3109/09687689509038508. [DOI] [PubMed] [Google Scholar]
  26. Salem N., Jr, Ward G. R. Are omega 3 fatty acids essential nutrients for mammals? World Rev Nutr Diet. 1993;72:128–147. doi: 10.1159/000422334. [DOI] [PubMed] [Google Scholar]
  27. Schnetkamp P. P. Ca2+ buffer sites in intact bovine rod outer segments: introduction to a novel optical probe to measure ionic permeabilities in suspensions of small particles. J Membr Biol. 1985;88(3):249–262. doi: 10.1007/BF01871089. [DOI] [PubMed] [Google Scholar]
  28. Seelig J. Interaction of phospholipids with Ca2+ ions. On the role of the phospholipid head groups. Cell Biol Int Rep. 1990 Apr;14(4):353–360. doi: 10.1016/0309-1651(90)91204-h. [DOI] [PubMed] [Google Scholar]
  29. Separovic F., Gawrisch K. Effect of unsaturation on the chain order of phosphatidylcholines in a dioleoylphosphatidylethanolamine matrix. Biophys J. 1996 Jul;71(1):274–282. doi: 10.1016/S0006-3495(96)79223-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smaby J. M., Momsen M. M., Brockman H. L., Brown R. E. Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Biophys J. 1997 Sep;73(3):1492–1505. doi: 10.1016/S0006-3495(97)78181-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tilcock C. P., Bally M. B., Farren S. B., Cullis P. R., Gruner S. M. Cation-dependent segregation phenomena and phase behavior in model membrane systems containing phosphatidylserine: influence of cholesterol and acyl chain composition. Biochemistry. 1984 Jun 5;23(12):2696–2703. doi: 10.1021/bi00307a025. [DOI] [PubMed] [Google Scholar]
  32. Tilcock C. P., Cullis P. R., Gruner S. M. Calcium-induced phase separation phenomena in multicomponent unsaturated lipid mixtures. Biochemistry. 1988 Mar 8;27(5):1415–1420. doi: 10.1021/bi00405a004. [DOI] [PubMed] [Google Scholar]
  33. Tokutomi S., Lew R., Ohnishi S. Ca2+-induced phase separation in phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine mixed membranes. Biochim Biophys Acta. 1981 May 6;643(2):276–282. doi: 10.1016/0005-2736(81)90073-0. [DOI] [PubMed] [Google Scholar]
  34. Yau K. W., Nakatani K. Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature. 1985 Feb 14;313(6003):579–582. doi: 10.1038/313579a0. [DOI] [PubMed] [Google Scholar]
  35. van Dijck P. W., de Kruijff B., Verkleij A. J., van Deenen L. L., de Gier J. Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine. Biochim Biophys Acta. 1978 Sep 11;512(1):84–96. doi: 10.1016/0005-2736(78)90219-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES