Abstract
The dynamics of endocytosis in living K562 cells was investigated after the osmotic pressure of the external medium was decreased and the transmembrane phospholipid number asymmetry was increased. When the external pressure was decreased by a factor of 0.54, a sudden inhibition of endocytosis was observed. Under these conditions, the endocytosis suddenly recovered after the phospholipid number asymmetry was increased. The phospholipid asymmetry was generated by the addition of exogenous phosphatidylserine, which is translocated by the endogenous flippase activity to the inner layer of the membrane. The recovery of endocytosis is thus consistent with the view that the phospholipid number asymmetry can act as a budding force for endocytosis. Moreover, we quantitatively predict both the inhibition and recovery of endocytosis as first-order phase transitions, using a general model that assumes the existence of a transmembrane surface tension asymmetry as the budding driving force. In this model, the tension asymmetry is considered to be elastically generated by the activity of phospholipid pumping. We finally propose that cells may trigger genetic transcription responses after the internalization of cytokine-receptor complexes, which could be controlled by variations in the cytosolic or external pressure.
Full Text
The Full Text of this article is available as a PDF (114.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baskin G., Schenker S., Frosto T., Henderson G. Transforming growth factor beta 1 inhibits epidermal growth factor receptor endocytosis and down-regulation in cultured fetal rat hepatocytes. J Biol Chem. 1991 Jul 15;266(20):13238–13242. [PubMed] [Google Scholar]
- Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
- Carraway K. L., 3rd, Cerione R. A. Fluorescent-labeled growth factor molecules serve as probes for receptor binding and endocytosis. Biochemistry. 1993 Nov 16;32(45):12039–12045. doi: 10.1021/bi00096a014. [DOI] [PubMed] [Google Scholar]
- Cribier S., Sainte-Marie J., Devaux P. F. Quantitative comparison between aminophospholipid translocase activity in human erythrocytes and in K562 cells. Biochim Biophys Acta. 1993 May 14;1148(1):85–90. doi: 10.1016/0005-2736(93)90163-t. [DOI] [PubMed] [Google Scholar]
- Cupers P., Veithen A., Kiss A., Baudhuin P., Courtoy P. J. Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts. J Cell Biol. 1994 Nov;127(3):725–735. doi: 10.1083/jcb.127.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dautry-Varsat A., Lodish H. F. How receptors bring proteins and particles into cells. Sci Am. 1984 May;250(5):52–58. doi: 10.1038/scientificamerican0584-52. [DOI] [PubMed] [Google Scholar]
- Döbereiner H. G., Käs J., Noppl D., Sprenger I., Sackmann E. Budding and fission of vesicles. Biophys J. 1993 Oct;65(4):1396–1403. doi: 10.1016/S0006-3495(93)81203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farge E., Devaux P. F. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J. 1992 Feb;61(2):347–357. doi: 10.1016/S0006-3495(92)81841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farge E. Increased vesicle endocytosis due to an increase in the plasma membrane phosphatidylserine concentration. Biophys J. 1995 Dec;69(6):2501–2506. doi: 10.1016/S0006-3495(95)80120-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farge E., Ojcius D. M., Subtil A., Dautry-Varsat A. Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am J Physiol. 1999 Mar;276(3 Pt 1):C725–C733. doi: 10.1152/ajpcell.1999.276.3.C725. [DOI] [PubMed] [Google Scholar]
- Fellmann P., Zachowski A., Devaux P. F. Synthesis and use of spin-labeled lipids for studies of the transmembrane movement of phospholipids. Methods Mol Biol. 1994;27:161–175. doi: 10.1385/0-89603-250-7:161. [DOI] [PubMed] [Google Scholar]
- Helfrich W. Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles. Z Naturforsch C. 1974 Sep-Oct;29C(9-10):510–515. doi: 10.1515/znc-1974-9-1010. [DOI] [PubMed] [Google Scholar]
- Jin A. J., Nossal R. Topological mechanisms involved in the formation of clathrin-coated vesicles. Biophys J. 1993 Oct;65(4):1523–1537. doi: 10.1016/S0006-3495(93)81189-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jülicher F, Lipowsky R. Shape transformations of vesicles with intramembrane domains. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Mar;53(3):2670–2683. doi: 10.1103/physreve.53.2670. [DOI] [PubMed] [Google Scholar]
- Kamp D., Haest C. W. Evidence for a role of the multidrug resistance protein (MRP) in the outward translocation of NBD-phospholipids in the erythrocyte membrane. Biochim Biophys Acta. 1998 Jun 24;1372(1):91–101. doi: 10.1016/s0005-2736(98)00049-2. [DOI] [PubMed] [Google Scholar]
- Koenig J. A., Edwardson J. M. Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol Sci. 1997 Aug;18(8):276–287. doi: 10.1016/s0165-6147(97)01091-2. [DOI] [PubMed] [Google Scholar]
- Käs J., Sackmann E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys J. 1991 Oct;60(4):825–844. doi: 10.1016/S0006-3495(91)82117-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipowsky R. Domain-induced budding of fluid membranes. Biophys J. 1993 Apr;64(4):1133–1138. doi: 10.1016/S0006-3495(93)81479-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maddox J. How and why of vesicle formation. Nature. 1993 May 20;363(6426):205–205. doi: 10.1038/363205a0. [DOI] [PubMed] [Google Scholar]
- Marsh D., Smith I. C. An interacting spin label study of the fluidizing and condensing effects of cholesterol on lecithin bilayers. Biochim Biophys Acta. 1973 Mar 16;298(2):133–144. doi: 10.1016/0005-2736(73)90345-3. [DOI] [PubMed] [Google Scholar]
- Mashl R. J., Bruinsma R. F. Spontaneous-curvature theory of clathrin-coated membranes. Biophys J. 1998 Jun;74(6):2862–2875. doi: 10.1016/S0006-3495(98)77993-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuoka K., Orci L., Amherdt M., Bednarek S. Y., Hamamoto S., Schekman R., Yeung T. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell. 1998 Apr 17;93(2):263–275. doi: 10.1016/s0092-8674(00)81577-9. [DOI] [PubMed] [Google Scholar]
- Morales-Mulia S., Vaca L., Hernandez-Cruz A., Pasantes-Morales H. Osmotic swelling-induced changes in cytosolic calcium do not affect regulatory volume decrease in rat cultured suspended cerebellar astrocytes. J Neurochem. 1998 Dec;71(6):2330–2338. doi: 10.1046/j.1471-4159.1998.71062330.x. [DOI] [PubMed] [Google Scholar]
- Raucher D., Sheetz M. P. Membrane expansion increases endocytosis rate during mitosis. J Cell Biol. 1999 Feb 8;144(3):497–506. doi: 10.1083/jcb.144.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redelmeier T. E., Hope M. J., Cullis P. R. On the mechanism of transbilayer transport of phosphatidylglycerol in response to transmembrane pH gradients. Biochemistry. 1990 Mar 27;29(12):3046–3053. doi: 10.1021/bi00464a022. [DOI] [PubMed] [Google Scholar]
- Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
- Seigneuret M., Devaux P. F. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3751–3755. doi: 10.1073/pnas.81.12.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorkin A. D., Teslenko L. V., Nikolsky N. N. The endocytosis of epidermal growth factor in A431 cells: a pH of microenvironment and the dynamics of receptor complex dissociation. Exp Cell Res. 1988 Mar;175(1):192–205. doi: 10.1016/0014-4827(88)90266-2. [DOI] [PubMed] [Google Scholar]
- Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweadner K. J., Goldin S. M. Active transport of sodium and potassium ions: mechanism, function, and regulation. N Engl J Med. 1980 Apr 3;302(14):777–783. doi: 10.1056/NEJM198004033021404. [DOI] [PubMed] [Google Scholar]
- Tang X., Halleck M. S., Schlegel R. A., Williamson P. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science. 1996 Jun 7;272(5267):1495–1497. doi: 10.1126/science.272.5267.1495. [DOI] [PubMed] [Google Scholar]
- Urrutia R., Henley J. R., Cook T., McNiven M. A. The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):377–384. doi: 10.1073/pnas.94.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto N., Akiyama S., Katagiri T., Namiki M., Kurokawa T., Suda T. Smad1 and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem Biophys Res Commun. 1997 Sep 18;238(2):574–580. doi: 10.1006/bbrc.1997.7325. [DOI] [PubMed] [Google Scholar]
- Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993 Aug 15;294(Pt 1):1–14. doi: 10.1042/bj2940001. [DOI] [PMC free article] [PubMed] [Google Scholar]