Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3072–3080. doi: 10.1016/S0006-3495(00)76844-5

Actin and temperature effects on the cross-linking of the SH1-SH2 helix in myosin subfragment 1.

L K Nitao 1, E Reisler 1
PMCID: PMC1300889  PMID: 10827984

Abstract

Past biochemical work on myosin subfragment 1 (S1) has shown that the bent alpha-helix containing the reactive thiols SH1 (Cys(707)) and SH2 (Cys(697)) changes upon nucleotide and actin binding. In this study, we investigated the conformational dynamics of the SH1-SH2 helix in two actin-bound states of myosin and examined the effect of temperature on this helix, using five cross-linking reagents that are 5-15 A in length. Actin inhibited the cross-linking of SH1 to SH2 on both S1 and S1.MgADP for all of the reagents. Because the rate of SH2 modification was not altered by actin, the inhibition of cross-linking must result from a strong stabilization of the SH1-SH2 helix in the actin-bound states of S1. The dynamics of the helix is also influenced by temperature. At 25 degrees C, the rate constants for cross-linking in S1 alone are low, with values of approximately 0.010 min(-1) for all of the reagents. At 4 degrees C, the rate constants, except for the shortest reagent, range between 0.030 and 0.070 min(-1). The rate constants for SH2 modification in SH1-modified S1 show the opposite trend; they increase with the increases in temperature. The greater cross-linking at the lower temperature indicates destabilization of the SH1-SH2 helix at 4 degrees C. These results are discussed in terms of conformational dynamics of the SH1-SH2 helix.

Full Text

The Full Text of this article is available as a PDF (82.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguirre R., Lin S. H., Gonsoulin F., Wang C. K., Cheung H. C. Characterization of the ethenoadenosine diphosphate binding site of myosin subfragment 1. Energetics of the equilibrium between two states of nucleotide.S1 and vanadate-induced global conformation changes detected by energy transfer. Biochemistry. 1989 Jan 24;28(2):799–807. doi: 10.1021/bi00428a058. [DOI] [PubMed] [Google Scholar]
  2. Baker J. E., Brust-Mascher I., Ramachandran S., LaConte L. E., Thomas D. D. A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2944–2949. doi: 10.1073/pnas.95.6.2944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Batra R., Geeves M. A., Manstein D. J. Kinetic analysis of Dictyostelium discoideum myosin motor domains with glycine-to-alanine mutations in the reactive thiol region. Biochemistry. 1999 May 11;38(19):6126–6134. doi: 10.1021/bi982251e. [DOI] [PubMed] [Google Scholar]
  4. Burke M., Reisler E. Effect of nucleotide binding on the proximity of the essential sulfhydryl groups of myosin. Chemical probing of movement of residues during conformational transitions. Biochemistry. 1977 Dec 13;16(25):5559–5563. doi: 10.1021/bi00644a026. [DOI] [PubMed] [Google Scholar]
  5. Cartoux L., Chen T., DasGupta G., Chase P. B., Kushmerick M. J., Reisler E. Antibody and peptide probes of interactions between the SH1-SH2 region of myosin subfragment 1 and actin's N-terminus. Biochemistry. 1992 Nov 10;31(44):10929–10935. doi: 10.1021/bi00159a037. [DOI] [PubMed] [Google Scholar]
  6. Chaussepied P., Mornet D., Kassab R. Nucleotide trapping at the ATPase site of myosin subfragment 1 by a new interthiol crosslinking. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2037–2041. doi: 10.1073/pnas.83.7.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooke R. Actomyosin interaction in striated muscle. Physiol Rev. 1997 Jul;77(3):671–697. doi: 10.1152/physrev.1997.77.3.671. [DOI] [PubMed] [Google Scholar]
  8. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
  9. Duke J., Takashi R., Ue K., Morales M. F. Reciprocal reactivities of specific thiols when actin binds to myosin. Proc Natl Acad Sci U S A. 1976 Feb;73(2):302–306. doi: 10.1073/pnas.73.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
  11. Godfrey J. E., Harrington W. F. Self-association in the myosin system at high ionic strength. I. Sensitivity of the interaction to pH and ionic environment. Biochemistry. 1970 Feb 17;9(4):886–893. doi: 10.1021/bi00806a025. [DOI] [PubMed] [Google Scholar]
  12. Gulick A. M., Bauer C. B., Thoden J. B., Rayment I. X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry. 1997 Sep 30;36(39):11619–11628. doi: 10.1021/bi9712596. [DOI] [PubMed] [Google Scholar]
  13. Highsmith S., Jardetzky O. G-actin binding quenches internal motions in myosin subfragment-1. FEBS Lett. 1980 Nov 17;121(1):55–60. doi: 10.1016/0014-5793(80)81266-x. [DOI] [PubMed] [Google Scholar]
  14. Hiratsuka Y., Eto M., Yazawa M., Morita F. Reactivities of Cys707 (SH1) in intermediate states of myosin subfragment-1 ATPase. J Biochem. 1998 Sep;124(3):609–614. doi: 10.1093/oxfordjournals.jbchem.a022155. [DOI] [PubMed] [Google Scholar]
  15. Houdusse A., Kalabokis V. N., Himmel D., Szent-Györgyi A. G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell. 1999 May 14;97(4):459–470. doi: 10.1016/s0092-8674(00)80756-4. [DOI] [PubMed] [Google Scholar]
  16. Kameyama T., Sekine T. Effect of F-actin on the reactivity of a specific sulfhydryl group (S2) in heavy meromyosin. J Biochem. 1973 Dec;74(6):1283–1285. doi: 10.1093/oxfordjournals.jbchem.a130359. [DOI] [PubMed] [Google Scholar]
  17. Kinose F., Wang S. X., Kidambi U. S., Moncman C. L., Winkelmann D. A. Glycine 699 is pivotal for the motor activity of skeletal muscle myosin. J Cell Biol. 1996 Aug;134(4):895–909. doi: 10.1083/jcb.134.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kliche W., Pfannstiel J., Tiepold M., Stoeva S., Faulstich H. Thiol-specific cross-linkers of variable length reveal a similar separation of SH1 and SH2 in myosin subfragment 1 in the presence and absence of MgADP. Biochemistry. 1999 Aug 10;38(32):10307–10317. doi: 10.1021/bi990615c. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lehrer S. S., Nagy B., Gergely J. The binding of Cu 2+ to actin without loss of polymerizability: the involvement of the rapidly reacting -SH group. Arch Biochem Biophys. 1972 May;150(1):164–174. doi: 10.1016/0003-9861(72)90023-9. [DOI] [PubMed] [Google Scholar]
  21. Miller C. J., Reisler E. Role of charged amino acid pairs in subdomain-1 of actin in interactions with myosin. Biochemistry. 1995 Feb 28;34(8):2694–2700. doi: 10.1021/bi00008a037. [DOI] [PubMed] [Google Scholar]
  22. Moore P. B., Huxley H. E., DeRosier D. J. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol. 1970 Jun 14;50(2):279–295. doi: 10.1016/0022-2836(70)90192-0. [DOI] [PubMed] [Google Scholar]
  23. Mornet D., Ue K., Morales M. F. Stabilization of a primary loop in myosin subfragment 1 with a fluorescent crosslinker. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1658–1662. doi: 10.1073/pnas.82.6.1658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nikolaeva O. P., Orlov V. N., Dedova I. V., Drachev V. A., Levitsky D. I. Interaction of myosin subfragment 1 with F-actin studied by differential scanning calorimetry. Biochem Mol Biol Int. 1996 Nov;40(4):653–661. doi: 10.1080/15216549600201253. [DOI] [PubMed] [Google Scholar]
  25. Nitao L. K., Reisler E. Probing the conformational states of the SH1-SH2 helix in myosin: a cross-linking approach. Biochemistry. 1998 Nov 24;37(47):16704–16710. doi: 10.1021/bi9817212. [DOI] [PubMed] [Google Scholar]
  26. Patterson B., Ruppel K. M., Wu Y., Spudich J. A. Cold-sensitive mutants G680V and G691C of Dictyostelium myosin II confer dramatically different biochemical defects. J Biol Chem. 1997 Oct 31;272(44):27612–27617. doi: 10.1074/jbc.272.44.27612. [DOI] [PubMed] [Google Scholar]
  27. Polosukhina K., Highsmith S. Kinetic investigation of the ligand dependence of rabbit skeletal muscle myosin subfragment 1 Cys-697 and Cys-707 reactivities. Biochemistry. 1997 Sep 30;36(39):11952–11958. doi: 10.1021/bi9713759. [DOI] [PubMed] [Google Scholar]
  28. Rayment I. The structural basis of the myosin ATPase activity. J Biol Chem. 1996 Jul 5;271(27):15850–15853. doi: 10.1074/jbc.271.27.15850. [DOI] [PubMed] [Google Scholar]
  29. Roopnarine O., Szent-Györgyi A. G., Thomas D. D. Microsecond rotational dynamics of spin-labeled myosin regulatory light chain induced by relaxation and contraction of scallop muscle. Biochemistry. 1998 Oct 13;37(41):14428–14436. doi: 10.1021/bi9808363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schwyter D., Phillips M., Reisler E. Subtilisin-cleaved actin: polymerization and interaction with myosin subfragment 1. Biochemistry. 1989 Jul 11;28(14):5889–5895. doi: 10.1021/bi00440a027. [DOI] [PubMed] [Google Scholar]
  31. Shriver J. W. The structure of myosin and its role in energy transduction in muscle. Biochem Cell Biol. 1986 Apr;64(4):265–276. doi: 10.1139/o86-038. [DOI] [PubMed] [Google Scholar]
  32. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  33. Uyeda T. Q., Abramson P. D., Spudich J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4459–4464. doi: 10.1073/pnas.93.9.4459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Walker M., White H., Belknap B., Trinick J. Electron cryomicroscopy of acto-myosin-S1 during steady-state ATP hydrolysis. Biophys J. 1994 May;66(5):1563–1572. doi: 10.1016/S0006-3495(94)80948-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Walker M., Zhang X. Z., Jiang W., Trinick J., White H. D. Observation of transient disorder during myosin subfragment-1 binding to actin by stopped-flow fluorescence and millisecond time resolution electron cryomicroscopy: evidence that the start of the crossbridge power stroke in muscle has variable geometry. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):465–470. doi: 10.1073/pnas.96.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weeds A. G., Pope B. Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility. J Mol Biol. 1977 Apr;111(2):129–157. doi: 10.1016/s0022-2836(77)80119-8. [DOI] [PubMed] [Google Scholar]
  37. Wells J. A., Knoeber C., Sheldon M. C., Werber M. M., Yount R. G. Cross-linking of myosin subfragment 1. Nucleotide-enhanced modification by a variety of bifunctional reagents. J Biol Chem. 1980 Dec 10;255(23):11135–11140. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES