Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3103–3111. doi: 10.1016/S0006-3495(00)76847-0

Influence of ADP on cross-bridge-dependent activation of myofibrillar thin filaments.

D Zhang 1, K W Yancey 1, D R Swartz 1
PMCID: PMC1300892  PMID: 10827987

Abstract

Contraction of skeletal muscle is regulated by calcium at the level of the thin filament via troponin and tropomyosin. Studies have indicated that strong cross-bridge binding is also involved in activation of the thin filament. To further test this, myofibrils were incubated with a wide range of fluorescent myosin subfragment 1(fS1) at pCa 9 or pCa 4 with or without ADP. Sarcomere fluorescence intensity and the fluorescence intensity ratio (non-overlap region/overlap region) were measured to determine the amount and location of bound fS1 in the myofibril. There was lower sarcomere fluorescence intensity with ADP compared to without ADP for both calcium levels. Similar data were obtained from biochemical measures of bound fS1, validating the fluorescence microscopy measurements. The intensity ratio, which is related to activation of the thin filament, increased with increasing [fS1] with or without ADP. At pCa 9, the fluorescence intensity ratio was constant until 80-160 nM fS1 without ADP conditions, then it went up dramatically and finally attained saturation. The dramatic shift of the ratio demonstrated the cooperative character of strong cross-bridge binding, and this was not observed at high calcium. A similar pattern was observed with ADP in that the ratio was right-shifted with respect to total [fS1]. Saturation was obtained with both the fluorescence intensity and ratio data. Plots of intensity ratio as a function of normalized sarcomere intensity (bound fS1) showed little difference between with and without ADP. This suggests that the amount of strongly bound fS1, not fS1 state (with or without ADP) is related to activation of the thin filament.

Full Text

The Full Text of this article is available as a PDF (171.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brenner B., Chalovich J. M. Kinetics of thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle: implications for regulation of muscle contraction. Biophys J. 1999 Nov;77(5):2692–2708. doi: 10.1016/S0006-3495(99)77103-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brenner B. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci U S A. 1988 May;85(9):3265–3269. doi: 10.1073/pnas.85.9.3265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenner B., Kraft T., Yu L. C., Chalovich J. M. Thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle. Biophys J. 1999 Nov;77(5):2677–2691. doi: 10.1016/S0006-3495(99)77102-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carter S. G., Karl D. W. Inorganic phosphate assay with malachite green: an improvement and evaluation. J Biochem Biophys Methods. 1982 Dec;7(1):7–13. doi: 10.1016/0165-022x(82)90031-8. [DOI] [PubMed] [Google Scholar]
  5. Chalovich J. M. Actin mediated regulation of muscle contraction. Pharmacol Ther. 1992;55(2):95–148. doi: 10.1016/0163-7258(92)90013-p. [DOI] [PubMed] [Google Scholar]
  6. Chalovich J. M., Eisenberg E. Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin. J Biol Chem. 1982 Mar 10;257(5):2432–2437. [PMC free article] [PubMed] [Google Scholar]
  7. Chalovich J. M., Eisenberg E. Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin. J Biol Chem. 1982 Mar 10;257(5):2432–2437. [PMC free article] [PubMed] [Google Scholar]
  8. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  9. Farah C. S., Reinach F. C. Regulatory properties of recombinant tropomyosins containing 5-hydroxytryptophan: Ca2+-binding to troponin results in a conformational change in a region of tropomyosin outside the troponin binding site. Biochemistry. 1999 Aug 10;38(32):10543–10551. doi: 10.1021/bi982813u. [DOI] [PubMed] [Google Scholar]
  10. GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
  11. Godt R. E., Lindley B. D. Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J Gen Physiol. 1982 Aug;80(2):279–297. doi: 10.1085/jgp.80.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gollub J., Cremo C. R., Cooke R. ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin. Nat Struct Biol. 1996 Sep;3(9):796–802. doi: 10.1038/nsb0996-796. [DOI] [PubMed] [Google Scholar]
  13. Gordon A. M., LaMadrid M. A., Chen Y., Luo Z., Chase P. B. Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J. 1997 Mar;72(3):1295–1307. doi: 10.1016/S0006-3495(97)78776-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Graceffa P. Movement of smooth muscle tropomyosin by myosin heads. Biochemistry. 1999 Sep 14;38(37):11984–11992. doi: 10.1021/bi9825495. [DOI] [PubMed] [Google Scholar]
  15. Head J. G., Ritchie M. D., Geeves M. A. Characterization of the equilibrium between blocked and closed states of muscle thin filaments. Eur J Biochem. 1995 Feb 1;227(3):694–699. doi: 10.1111/j.1432-1033.1995.tb20190.x. [DOI] [PubMed] [Google Scholar]
  16. Hill H. D., Straka J. G. Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem. 1988 Apr;170(1):203–208. doi: 10.1016/0003-2697(88)90109-1. [DOI] [PubMed] [Google Scholar]
  17. Hill T. L., Eisenberg E., Greene L. Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin-troponin-tropomyosin complex. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3186–3190. doi: 10.1073/pnas.77.6.3186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Homsher E., Kim B., Bobkova A., Tobacman L. S. Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J. 1996 Apr;70(4):1881–1892. doi: 10.1016/S0006-3495(96)79753-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horiuti K., Yagi N., Takemori S. Mechanical study of rat soleus muscle using caged ATP and X-ray diffraction: high ADP affinity of slow cross-bridges. J Physiol. 1997 Jul 15;502(Pt 2):433–447. doi: 10.1111/j.1469-7793.1997.433bk.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ishii Y., Lehrer S. S. Excimer fluorescence of pyrenyliodoacetamide-labeled tropomyosin: a probe of the state of tropomyosin in reconstituted muscle thin filaments. Biochemistry. 1990 Feb 6;29(5):1160–1166. doi: 10.1021/bi00457a010. [DOI] [PubMed] [Google Scholar]
  21. Lehman W., Craig R., Vibert P. Ca(2+)-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature. 1994 Mar 3;368(6466):65–67. doi: 10.1038/368065a0. [DOI] [PubMed] [Google Scholar]
  22. Lehrer S. S. The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? J Muscle Res Cell Motil. 1994 Jun;15(3):232–236. doi: 10.1007/BF00123476. [DOI] [PubMed] [Google Scholar]
  23. Maytum R., Lehrer S. S., Geeves M. A. Cooperativity and switching within the three-state model of muscle regulation. Biochemistry. 1999 Jan 19;38(3):1102–1110. doi: 10.1021/bi981603e. [DOI] [PubMed] [Google Scholar]
  24. McKillop D. F., Geeves M. A. Regulation of the acto.myosin subfragment 1 interaction by troponin/tropomyosin. Evidence for control of a specific isomerization between two acto.myosin subfragment 1 states. Biochem J. 1991 Nov 1;279(Pt 3):711–718. doi: 10.1042/bj2790711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McKillop D. F., Geeves M. A. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J. 1993 Aug;65(2):693–701. doi: 10.1016/S0006-3495(93)81110-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miki M., Iio T. Kinetics of structural changes of reconstituted skeletal muscle thin filaments observed by fluorescence resonance energy transfer. J Biol Chem. 1993 Apr 5;268(10):7101–7106. [PubMed] [Google Scholar]
  27. Miki M., Miura T., Sano K., Kimura H., Kondo H., Ishida H., Maéda Y. Fluorescence resonance energy transfer between points on tropomyosin and actin in skeletal muscle thin filaments: does tropomyosin move? J Biochem. 1998 Jun;123(6):1104–1111. doi: 10.1093/oxfordjournals.jbchem.a022049. [DOI] [PubMed] [Google Scholar]
  28. Millar N. C., Homsher E. The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. A steady-state and transient kinetic study. J Biol Chem. 1990 Nov 25;265(33):20234–20240. [PubMed] [Google Scholar]
  29. Popp D., Maéda Y. Calcium ions and the structure of muscle actin filament. An X-ray diffraction study. J Mol Biol. 1993 Jan 20;229(2):279–285. doi: 10.1006/jmbi.1993.1032. [DOI] [PubMed] [Google Scholar]
  30. Squire J. M., Morris E. P. A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J. 1998 Jul;12(10):761–771. doi: 10.1096/fasebj.12.10.761. [DOI] [PubMed] [Google Scholar]
  31. Swartz D. R., Greaser M. L., Marsh B. B. Regulation of binding of subfragment 1 in isolated rigor myofibrils. J Cell Biol. 1990 Dec;111(6 Pt 2):2989–3001. doi: 10.1083/jcb.111.6.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Swartz D. R., Moss R. L., Greaser M. L. Calcium alone does not fully activate the thin filament for S1 binding to rigor myofibrils. Biophys J. 1996 Oct;71(4):1891–1904. doi: 10.1016/S0006-3495(96)79388-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Swartz D. R., Moss R. L., Greaser M. L. Characteristics of troponin C binding to the myofibrillar thin filament: extraction of troponin C is not random along the length of the thin filament. Biophys J. 1997 Jul;73(1):293–305. doi: 10.1016/S0006-3495(97)78070-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Swartz D. R., Moss R. L. Influence of a strong-binding myosin analogue on calcium-sensitive mechanical properties of skinned skeletal muscle fibers. J Biol Chem. 1992 Oct 5;267(28):20497–20506. [PubMed] [Google Scholar]
  35. Swartz D. R., Zhang D., Yancey K. W. Cross bridge-dependent activation of contraction in cardiac myofibrils at low pH. Am J Physiol. 1999 May;276(5 Pt 2):H1460–H1467. doi: 10.1152/ajpheart.1999.276.5.H1460. [DOI] [PubMed] [Google Scholar]
  36. Tao T., Gong B. J., Leavis P. C. Calcium-induced movement of troponin-I relative to actin in skeletal muscle thin filaments. Science. 1990 Mar 16;247(4948):1339–1341. doi: 10.1126/science.2138356. [DOI] [PubMed] [Google Scholar]
  37. Tao T., Lamkin M., Lehrer S. S. Excitation energy transfer studies of the proximity between tropomyosin and actin in reconstituted skeletal muscle thin filaments. Biochemistry. 1983 Jun 21;22(13):3059–3066. doi: 10.1021/bi00282a006. [DOI] [PubMed] [Google Scholar]
  38. Thirlwell H., Corrie J. E., Reid G. P., Trentham D. R., Ferenczi M. A. Kinetics of relaxation from rigor of permeabilized fast-twitch skeletal fibers from the rabbit using a novel caged ATP and apyrase. Biophys J. 1994 Dec;67(6):2436–2447. doi: 10.1016/S0006-3495(94)80730-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vibert P., Craig R., Lehman W. Steric-model for activation of muscle thin filaments. J Mol Biol. 1997 Feb 14;266(1):8–14. doi: 10.1006/jmbi.1996.0800. [DOI] [PubMed] [Google Scholar]
  40. Walker J. W., Lu Z., Moss R. L. Effects of Ca2+ on the kinetics of phosphate release in skeletal muscle. J Biol Chem. 1992 Feb 5;267(4):2459–2466. [PubMed] [Google Scholar]
  41. Xu C., Craig R., Tobacman L., Horowitz R., Lehman W. Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys J. 1999 Aug;77(2):985–992. doi: 10.1016/S0006-3495(99)76949-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yamaguchi M. Modulating factors of calcium-free contraction at low [MgATP]: a physiological study on the steady states of skinned fibres of frog skeletal muscle. J Muscle Res Cell Motil. 1998 Nov;19(8):949–960. doi: 10.1023/a:1005405002095. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES