Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3112–3119. doi: 10.1016/S0006-3495(00)76848-2

Temperature change does not affect force between single actin filaments and HMM from rabbit muscles.

M Kawai 1, K Kawaguchi 1, M Saito 1, S Ishiwata 1
PMCID: PMC1300893  PMID: 10827988

Abstract

The temperature dependence of sliding force, velocity, and unbinding force was studied on actin filaments when they were placed on heavy meromyosin (HMM) attached to a glass surface. A fluorescently labeled actin filament was attached to the gelsolin-coated surface of a 1-microm polystyrene bead. The bead was trapped by optical tweezers, and HMM-actin interaction was performed at 20-35 degrees C to examine whether force is altered by the temperature change. Our experiments demonstrate that sliding force increased moderately with temperature (Q(10) = 1.6 +/- 0.2, +/-SEM, n = 9), whereas the velocity increased significantly (Q(10) = 2.9 +/- 0.4, n = 10). The moderate increase in force is caused by the increased number of available cross-bridges for actin interaction, because the cross-bridge number similarly increased with temperature (Q(10) = 1. 5 +/- 0.2, n = 3) when measured during rigor induction. We further found that unbinding force measured during the rigor condition did not differ with temperature. These results indicate that the amount of force each cross-bridge generates is fixed, and it does not change with temperature. We found that the above generalization was not modified in the presence of 1 mM MgADP or 8 mM phosphate.

Full Text

The Full Text of this article is available as a PDF (98.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anson M. Temperature dependence and Arrhenius activation energy of F-actin velocity generated in vitro by skeletal myosin. J Mol Biol. 1992 Apr 20;224(4):1029–1038. doi: 10.1016/0022-2836(92)90467-x. [DOI] [PubMed] [Google Scholar]
  2. Bershitsky S. Y., Tsaturyan A. K. Tension responses to joule temperature jump in skinned rabbit muscle fibres. J Physiol. 1992 Feb;447:425–448. doi: 10.1113/jphysiol.1992.sp019010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  4. Goldman Y. E., McCray J. A., Ranatunga K. W. Transient tension changes initiated by laser temperature jumps in rabbit psoas muscle fibres. J Physiol. 1987 Nov;392:71–95. doi: 10.1113/jphysiol.1987.sp016770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harada Y., Sakurada K., Aoki T., Thomas D. D., Yanagida T. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol. 1990 Nov 5;216(1):49–68. doi: 10.1016/S0022-2836(05)80060-9. [DOI] [PubMed] [Google Scholar]
  6. Homsher E., Wang F., Sellers J. R. Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am J Physiol. 1992 Mar;262(3 Pt 1):C714–C723. doi: 10.1152/ajpcell.1992.262.3.C714. [DOI] [PubMed] [Google Scholar]
  7. Howard J. Molecular motors: structural adaptations to cellular functions. Nature. 1997 Oct 9;389(6651):561–567. doi: 10.1038/39247. [DOI] [PubMed] [Google Scholar]
  8. Ishijima A., Kojima H., Higuchi H., Harada Y., Funatsu T., Yanagida T. Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces. Biophys J. 1996 Jan;70(1):383–400. doi: 10.1016/S0006-3495(96)79582-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kato H., Nishizaka T., Iga T., Kinosita K., Jr, Ishiwata S. Imaging of thermal activation of actomyosin motors. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9602–9606. doi: 10.1073/pnas.96.17.9602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawai M., Zhao Y. Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers. Biophys J. 1993 Aug;65(2):638–651. doi: 10.1016/S0006-3495(93)81109-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kishino A., Yanagida T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature. 1988 Jul 7;334(6177):74–76. doi: 10.1038/334074a0. [DOI] [PubMed] [Google Scholar]
  12. Kraft T., Brenner B. Force enhancement without changes in cross-bridge turnover kinetics: the effect of EMD 57033. Biophys J. 1997 Jan;72(1):272–281. doi: 10.1016/S0006-3495(97)78666-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kull F. J., Vale R. D., Fletterick R. J. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J Muscle Res Cell Motil. 1998 Nov;19(8):877–886. doi: 10.1023/a:1005489907021. [DOI] [PubMed] [Google Scholar]
  14. Kurokawa H., Fujii W., Ohmi K., Sakurai T., Nonomura Y. Simple and rapid purification of brevin. Biochem Biophys Res Commun. 1990 Apr 30;168(2):451–457. doi: 10.1016/0006-291x(90)92342-w. [DOI] [PubMed] [Google Scholar]
  15. Miyata H., Hakozaki H., Yoshikawa H., Suzuki N., Kinosita K., Jr, Nishizaka T., Ishiwata S. Stepwise motion of an actin filament over a small number of heavy meromyosin molecules is revealed in an in vitro motility assay. J Biochem. 1994 Apr;115(4):644–647. doi: 10.1093/oxfordjournals.jbchem.a124389. [DOI] [PubMed] [Google Scholar]
  16. Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
  17. Nishizaka T., Miyata H., Yoshikawa H., Ishiwata S., Kinosita K., Jr Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature. 1995 Sep 21;377(6546):251–254. doi: 10.1038/377251a0. [DOI] [PubMed] [Google Scholar]
  18. Ranatunga K. W. Endothermic force generation in fast and slow mammalian (rabbit) muscle fibers. Biophys J. 1996 Oct;71(4):1905–1913. doi: 10.1016/S0006-3495(96)79389-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Suzuki N., Miyata H., Ishiwata S., Kinosita K., Jr Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay. Biophys J. 1996 Jan;70(1):401–408. doi: 10.1016/S0006-3495(96)79583-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Winkelmann D. A., Bourdieu L., Ott A., Kinose F., Libchaber A. Flexibility of myosin attachment to surfaces influences F-actin motion. Biophys J. 1995 Jun;68(6):2444–2453. doi: 10.1016/S0006-3495(95)80426-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zhao Y., Kawai M. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J. 1994 Oct;67(4):1655–1668. doi: 10.1016/S0006-3495(94)80638-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES