Abstract
The photosynthetic reaction center (RC) of green sulfur bacteria contains two [4Fe-4S] clusters named F(A) and F(B), by analogy with photosystem I (PS I). PS I also contains an interpolypeptide [4Fe-4S] cluster named F(X); however, spectroscopic evidence for an analogous iron-sulfur cluster in green sulfur bacteria remains equivocal. To minimize oxidative damage to the iron-sulfur clusters, we studied the sensitivity of F(A) and F(B) to molecular oxygen in whole cells of Chlorobium vibrioforme and Chlorobium tepidum and obtained highly photoactive membranes and RCs from Cb. tepidum by adjusting isolation conditions to maximize the amplitude of the F(A)(-)/F(B)(-) electron paramagnetic resonance signal at g = 1.89 (measured at 126 mW of microwave power and 14 K) relative to the P840(+) signal at g = 2.0028 (measured at 800 microW of microwave power and 14 K). In these optimized preparations we were able to differentiate F(X)(-) from F(A)(-)/F(B)(-) by their different relaxation properties. At temperatures between 4 and 9 K, isolated membranes and RCs of Cb. tepidum show a broad peak at g = 2.12 and a prominent high-field trough at g = 1.76 (measured at 126 mW of microwave power). The complete g-tensor of F(X)(-), extracted by numerical simulation, yields principal values of 2.17, 1.92, and 1. 77 and is similar to F(X) in PS I. An important difference from PS I is that because the bound cytochrome is available as a fast electron donor in Chlorobium, it is not necessary to prereduce F(A) and F(B) to photoaccumulate F(X)(-).
Full Text
The Full Text of this article is available as a PDF (161.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Büttner M., Xie D. L., Nelson H., Pinther W., Hauska G., Nelson N. Photosynthetic reaction center genes in green sulfur bacteria and in photosystem 1 are related. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8135–8139. doi: 10.1073/pnas.89.17.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feiler U., Nitschke W., Michel H. Characterization of an improved reaction center preparation from the photosynthetic green sulfur bacterium Chlorobium containing the FeS centers FA and FB and a bound cytochrome subunit. Biochemistry. 1992 Mar 10;31(9):2608–2614. doi: 10.1021/bi00124a022. [DOI] [PubMed] [Google Scholar]
- Guigliarelli B., Guillaussier J., More C., Sétif P., Bottin H., Bertrand P. Structural organization of the iron-sulfur centers in Synechocystis 6803 photosystem I. EPR study of oriented thylakoid membranes and analysis of the magnetic interactions. J Biol Chem. 1993 Jan 15;268(2):900–908. [PubMed] [Google Scholar]
- Hager-Braun C., Xie D. L., Jarosch U., Herold E., Büttner M., Zimmermann R., Deutzmann R., Hauska G., Nelson N. Stable photobleaching of P840 in Chlorobium reaction center preparations: presence of the 42-kDa bacteriochlorophyll a protein and a 17-kDa polypeptide. Biochemistry. 1995 Jul 25;34(29):9617–9624. doi: 10.1021/bi00029a039. [DOI] [PubMed] [Google Scholar]
- Hase T., Wakabayashi S., Matsubara H., Evans M. C., Jennings J. V. Amino acid sequence of a ferredoxin from Chlorobium thiosulfatophilum strain Tassajara, a photosynthetic green sulfur bacterium. J Biochem. 1978 May;83(5):1321–1325. doi: 10.1093/oxfordjournals.jbchem.a132039. [DOI] [PubMed] [Google Scholar]
- Jennings J. V., Evans M. C. The irreversible photoreduction of a low potential component at low temperatures in a preparation of the green photosynthetic bacterium Chlorobium thiosulphatophilum. FEBS Lett. 1977 Mar 15;75(1):33–36. doi: 10.1016/0014-5793(77)80046-x. [DOI] [PubMed] [Google Scholar]
- Jung Y. S., Vassiliev I. R., Yu J., McIntosh L., Golbeck J. H. Strains of Synechocystis sp. PCC 6803 with altered PsaC. II. EPR and optical spectroscopic properties of FA and FB in aspartate, serine, and alanine replacements of cysteines 14 and 51. J Biol Chem. 1997 Mar 21;272(12):8040–8049. doi: 10.1074/jbc.272.12.8040. [DOI] [PubMed] [Google Scholar]
- Knaff D. B., Malkin R. Iron-sulfur proteins of the green photosynthetic bacterium Chlorobium. Biochim Biophys Acta. 1976 May 14;430(2):244–252. doi: 10.1016/0005-2728(76)90082-7. [DOI] [PubMed] [Google Scholar]
- Miller M., Liu X., Snyder S. W., Thurnauer M. C., Biggins J. Photosynthetic electron-transfer reactions in the green sulfur bacterium Chlorobium vibrioforme: evidence for the functional involvement of iron-sulfur redox centers on the acceptor side of the reaction center. Biochemistry. 1992 May 5;31(17):4354–4363. doi: 10.1021/bi00132a028. [DOI] [PubMed] [Google Scholar]
- Moënne-Loccoz P., Heathcote P., Maclachlan D. J., Berry M. C., Davis I. H., Evans M. C. Path of electron transfer in photosystem 1: direct evidence of forward electron transfer from A1 to Fe-Sx. Biochemistry. 1994 Aug 23;33(33):10037–10042. doi: 10.1021/bi00199a030. [DOI] [PubMed] [Google Scholar]
- Nitschke W., Feiler U., Rutherford A. W. Photosynthetic reaction center of green sulfur bacteria studied by EPR. Biochemistry. 1990 Apr 24;29(16):3834–3842. doi: 10.1021/bi00468a005. [DOI] [PubMed] [Google Scholar]
- Rigby S. E., Thapar R., Evans M. C., Heathcote P. The electronic structure of P840+. The primary donor of the Chlorobium limicola f. sp. thiosulphatophilum photosynthetic reaction centre. FEBS Lett. 1994 Aug 15;350(1):24–28. doi: 10.1016/0014-5793(94)00724-1. [DOI] [PubMed] [Google Scholar]
- Rupp H., Rao K. K., Hall D. O., Cammack R. Electron spin relaxation of iron-sulphur proteins studied by microwave power saturation. Biochim Biophys Acta. 1978 Dec 20;537(2):255–260. doi: 10.1016/0005-2795(78)90509-3. [DOI] [PubMed] [Google Scholar]
- Scott M. P., Kjoer B., Scheller H. V., Golbeck J. H. Redox titration of two [4Fe-4S] clusters in the photosynthetic reaction center from the anaerobic green sulfur bacterium Chlorobium vibrioforme. Eur J Biochem. 1997 Mar 1;244(2):454–461. doi: 10.1111/j.1432-1033.1997.00454.x. [DOI] [PubMed] [Google Scholar]
- Stowell M. H., McPhillips T. M., Rees D. C., Soltis S. M., Abresch E., Feher G. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science. 1997 May 2;276(5313):812–816. doi: 10.1126/science.276.5313.812. [DOI] [PubMed] [Google Scholar]
- Tanaka M., Haniu M., Yasunobu K. T., Evans M. C., Rao K. K. Amino acid sequence of ferredoxin from a photosynthetic green bacterium, Chlorobium limicola. Biochemistry. 1974 Jul 2;13(14):2953–2959. doi: 10.1021/bi00711a026. [DOI] [PubMed] [Google Scholar]
- Tanaka M., Haniu M., Yasunobu K. T., Evans M. C., Rao K. K. The amino acid sequence of ferredoxin II from Chlorobium limicola, a photosynthetic green bacterium. Biochemistry. 1975 May 6;14(9):1938–1943. doi: 10.1021/bi00680a021. [DOI] [PubMed] [Google Scholar]
- Vassiliev I. R., Jung Y. S., Smart L. B., Schulz R., McIntosh L., Golbeck J. H. A mixed-ligand iron-sulfur cluster (C556SPaB or C565SPsaB) in the Fx-binding site leads to a decreased quantum efficiency of electron transfer in photosystem I. Biophys J. 1995 Oct;69(4):1544–1553. doi: 10.1016/S0006-3495(95)80026-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassiliev I. R., Yu J., Jung Y. S., Schulz R., Ganago A. O., McIntosh L., Golbeck J. H. The cysteine-proximal aspartates in the Fx-binding niche of photosystem I. Effect of alanine and lysine replacements on photoautotrophic growth, electron transfer rates, single-turnover flash efficiency, and EPR spectral properties. J Biol Chem. 1999 Apr 9;274(15):9993–10001. doi: 10.1074/jbc.274.15.9993. [DOI] [PubMed] [Google Scholar]
- van der Est A., Bock C., Golbeck J., Brettel K., Sétif P., Stehlik D. Electron transfer from the acceptor A1 to the iron-sulfur centers in photosystem I as studied by transient EPR spectroscopy. Biochemistry. 1994 Oct 4;33(39):11789–11797. doi: 10.1021/bi00205a015. [DOI] [PubMed] [Google Scholar]