Abstract
Sticholysin II (Stn II), a potent cytolytic protein isolated from the sea anemone Stichodactyla helianthus, has been crystallized on lipid monolayers. With Fourier-based methods, a three-dimensional (3D) model of Stn II, up to a resolution of 15 A, has been determined. The two-sided plane group is p22(1)2, with dimensions a = 98 A, b = 196 A. The 3D model of Stn II displays a Y-shaped structure, slightly flattened, with a small curvature along its longest dimension (51 A). This protein, with a molecular mass of 19. 2 kDa, is one of the smallest structures reconstructed with this methodology. Two-dimensional (2D) crystals of Stn II on phosphatidylcholine monolayers present a unit cell with two tetrameric motifs, with the monomers in two different orientations: one with its longest dimension lying on the crystal plane and the other with this same axis leaning at an angle of approximately 60 degrees with the crystal plane.
Full Text
The Full Text of this article is available as a PDF (623.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos L. A., Henderson R., Unwin P. N. Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog Biophys Mol Biol. 1982;39(3):183–231. doi: 10.1016/0079-6107(83)90017-2. [DOI] [PubMed] [Google Scholar]
- Baldwin J. M., Henderson R., Beckman E., Zemlin F. Images of purple membrane at 2.8 A resolution obtained by cryo-electron microscopy. J Mol Biol. 1988 Aug 5;202(3):585–591. doi: 10.1016/0022-2836(88)90288-4. [DOI] [PubMed] [Google Scholar]
- Belmonte G., Menestrina G., Pederzolli C., Krizaj I., Gubensek F., Turk T., Macek P. Primary and secondary structure of a pore-forming toxin from the sea anemone, Actinia equina L., and its association with lipid vesicles. Biochim Biophys Acta. 1994 Jun 22;1192(2):197–204. doi: 10.1016/0005-2736(94)90119-8. [DOI] [PubMed] [Google Scholar]
- Belmonte G., Pederzolli C., Macek P., Menestrina G. Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes. J Membr Biol. 1993 Jan;131(1):11–22. doi: 10.1007/BF02258530. [DOI] [PubMed] [Google Scholar]
- Bernheimer A. W., Avigad L. S. Properties of a toxin from the sea anemone Stoichacis helianthus, including specific binding to sphingomyelin. Proc Natl Acad Sci U S A. 1976 Feb;73(2):467–471. doi: 10.1073/pnas.73.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenthal K. M., Kem W. R. Primary structure of Stoichactis helianthus cytolysin III. J Biol Chem. 1983 May 10;258(9):5574–5581. [PubMed] [Google Scholar]
- Castañeda O., Sotolongo V., Amor A. M., Stöcklin R., Anderson A. J., Harvey A. L., Engström A., Wernstedt C., Karlsson E. Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. Toxicon. 1995 May;33(5):603–613. doi: 10.1016/0041-0101(95)00013-c. [DOI] [PubMed] [Google Scholar]
- Crowther R. A., Henderson R., Smith J. M. MRC image processing programs. J Struct Biol. 1996 Jan-Feb;116(1):9–16. doi: 10.1006/jsbi.1996.0003. [DOI] [PubMed] [Google Scholar]
- Doyle J. W., Kem W. R., Vilallonga F. A. Interfacial activity of an ion channel-generating protein cytolysin from the sea anemone Stichodactyla helianthus. Toxicon. 1989;27(4):465–471. doi: 10.1016/0041-0101(89)90209-2. [DOI] [PubMed] [Google Scholar]
- Fromherz P. Electron microscopic studies of lipid protein films. Nature. 1971 May 28;231(5300):267–268. doi: 10.1038/231267a0. [DOI] [PubMed] [Google Scholar]
- Hardt S., Wang B., Schmid M. F. A brief description of I.C.E.: the integrated crystallographic environment. J Struct Biol. 1996 Jan-Feb;116(1):68–70. doi: 10.1006/jsbi.1996.0012. [DOI] [PubMed] [Google Scholar]
- Jap B. K. Molecular design of PhoE porin and its functional consequences. J Mol Biol. 1989 Jan 20;205(2):407–419. doi: 10.1016/0022-2836(89)90351-3. [DOI] [PubMed] [Google Scholar]
- Kubalek E. W., Kornberg R. D., Darst S. A. Improved transfer of two-dimensional crystals from the air/water interface to specimen support grids for high-resolution analysis by electron microscopy. Ultramicroscopy. 1991 Jun;35(3-4):295–304. doi: 10.1016/0304-3991(91)90082-h. [DOI] [PubMed] [Google Scholar]
- Leonard K., Haiker H., Weiss H. Three-dimensional structure of NADH: ubiquinone reductase (complex I) from Neurospora mitochondria determined by electron microscopy of membrane crystals. J Mol Biol. 1987 Mar 20;194(2):277–286. doi: 10.1016/0022-2836(87)90375-5. [DOI] [PubMed] [Google Scholar]
- Leonard K., Wingfield P., Arad T., Weiss H. Three-dimensional structure of ubiquinol:cytochrome c reductase from Neurospora mitochondria determined by electron microscopy of membrane crystals. J Mol Biol. 1981 Jun 25;149(2):259–274. doi: 10.1016/0022-2836(81)90301-6. [DOI] [PubMed] [Google Scholar]
- Macek P. Polypeptide cytolytic toxins from sea anemones (Actiniaria). FEMS Microbiol Immunol. 1992 Sep;5(1-3):121–129. doi: 10.1111/j.1574-6968.1992.tb05894.x. [DOI] [PubMed] [Google Scholar]
- Macek P., Zecchini M., Pederzolli C., Dalla Serra M., Menestrina G. Intrinsic tryptophan fluorescence of equinatoxin II, a pore-forming polypeptide from the sea anemone Actinia equina L, monitors its interaction with lipid membranes. Eur J Biochem. 1995 Nov 15;234(1):329–335. doi: 10.1111/j.1432-1033.1995.329_c.x. [DOI] [PubMed] [Google Scholar]
- Michaels D. W. Membrane damage by a toxin from the sea anemone Stoichactis helianthus. I. Formation of transmembrane channels in lipid bilayers. Biochim Biophys Acta. 1979 Jul 19;555(1):67–78. doi: 10.1016/0005-2736(79)90072-5. [DOI] [PubMed] [Google Scholar]
- Mitra A. K., McCarthy M. P., Stroud R. M. Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kD cytoskeletal protein, determined at 22 A by low dose electron microscopy and x-ray diffraction to 12.5 A. J Cell Biol. 1989 Aug;109(2):755–774. doi: 10.1083/jcb.109.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norton R. S. Structure and structure-function relationships of sea anemone proteins that interact with the sodium channel. Toxicon. 1991;29(9):1051–1084. doi: 10.1016/0041-0101(91)90205-6. [DOI] [PubMed] [Google Scholar]
- Ribi H. O., Ludwig D. S., Mercer K. L., Schoolnik G. K., Kornberg R. D. Three-dimensional structure of cholera toxin penetrating a lipid membrane. Science. 1988 Mar 11;239(4845):1272–1276. doi: 10.1126/science.3344432. [DOI] [PubMed] [Google Scholar]
- Simpson R. J., Reid G. E., Moritz R. L., Morton C., Norton R. S. Complete amino acid sequence of tenebrosin-C, a cardiac stimulatory and haemolytic protein from the sea anemone Actinia tenebrosa. Eur J Biochem. 1990 Jun 20;190(2):319–328. doi: 10.1111/j.1432-1033.1990.tb15579.x. [DOI] [PubMed] [Google Scholar]
- Taylor K. A., Taylor D. W. Projection image of smooth muscle alpha-actinin from two-dimensional crystals formed on positively charged lipid layers. J Mol Biol. 1993 Mar 5;230(1):196–205. doi: 10.1006/jmbi.1993.1136. [DOI] [PubMed] [Google Scholar]
- Tejuca M., Serra M. D., Ferreras M., Lanio M. E., Menestrina G. Mechanism of membrane permeabilization by sticholysin I, a cytolysin isolated from the venom of the sea anemone Stichodactyla helianthus. Biochemistry. 1996 Nov 26;35(47):14947–14957. doi: 10.1021/bi960787z. [DOI] [PubMed] [Google Scholar]
- Thelestam M., Olofsson A., Blomqvist L., Hebert H. Oligomerisation of cell-bound staphylococcal alpha-toxin in relation to membrane permeabilisation. Biochim Biophys Acta. 1991 Feb 25;1062(2):245–254. doi: 10.1016/0005-2736(91)90399-s. [DOI] [PubMed] [Google Scholar]
- Uzgiris E. E., Kornberg R. D. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen--antibody--complement complexes. Nature. 1983 Jan 13;301(5896):125–129. doi: 10.1038/301125a0. [DOI] [PubMed] [Google Scholar]
- Valpuesta J. M., Carrascosa J. L., Henderson R. Analysis of electron microscope images and electron diffraction patterns of thin crystals of phi 29 connectors in ice. J Mol Biol. 1994 Jul 22;240(4):281–287. doi: 10.1006/jmbi.1994.1445. [DOI] [PubMed] [Google Scholar]
- Varanda W., Finkelstein A. Ion and nonelectrolyte permeability properties of channels formed in planar lipid bilayer membranes by the cytolytic toxin from the sea anemone, Stoichactis helianthus. J Membr Biol. 1980 Aug 7;55(3):203–211. doi: 10.1007/BF01869461. [DOI] [PubMed] [Google Scholar]
- Voges D., Berendes R., Burger A., Demange P., Baumeister W., Huber R. Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy-X-ray crystallography study. J Mol Biol. 1994 Apr 29;238(2):199–213. doi: 10.1006/jmbi.1994.1281. [DOI] [PubMed] [Google Scholar]
- Vécsey-Semjén B., Lesieur C., Möllby R., van der Goot F. G. Conformational changes due to membrane binding and channel formation by staphylococcal alpha-toxin. J Biol Chem. 1997 Feb 28;272(9):5709–5717. doi: 10.1074/jbc.272.9.5709. [DOI] [PubMed] [Google Scholar]
- Vécsey-Semjén B., Möllby R., van der Goot F. G. Partial C-terminal unfolding is required for channel formation by staphylococcal alpha-toxin. J Biol Chem. 1996 Apr 12;271(15):8655–8660. doi: 10.1074/jbc.271.15.8655. [DOI] [PubMed] [Google Scholar]
- Walker B., Krishnasastry M., Zorn L., Bayley H. Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis. J Biol Chem. 1992 Oct 25;267(30):21782–21786. [PubMed] [Google Scholar]
- Zorec R., Tester M., Macek P., Mason W. T. Cytotoxicity of equinatoxin II from the sea anemone Actinia equina involves ion channel formation and an increase in intracellular calcium activity. J Membr Biol. 1990 Dec;118(3):243–249. doi: 10.1007/BF01868608. [DOI] [PubMed] [Google Scholar]
- de los Rios V., Mancheño J. M., Lanio M. E., Oñaderra M., Gavilanes J. G. Mechanism of the leakage induced on lipid model membranes by the hemolytic protein sticholysin II from the sea anemone Stichodactyla helianthus. Eur J Biochem. 1998 Mar 1;252(2):284–289. doi: 10.1046/j.1432-1327.1998.2520284.x. [DOI] [PubMed] [Google Scholar]
- de los Ríos V., Mancheño J. M., Martínez del Pozo A., Alfonso C., Rivas G., Oñaderra M., Gavilanes J. G. Sticholysin II, a cytolysin from the sea anemone Stichodactyla helianthus, is a monomer-tetramer associating protein. FEBS Lett. 1999 Jul 16;455(1-2):27–30. doi: 10.1016/s0014-5793(99)00846-7. [DOI] [PubMed] [Google Scholar]