Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3195–3207. doi: 10.1016/S0006-3495(00)76856-1

Comparison of the solution conformation and dynamics of antifreeze glycoproteins from Antarctic fish.

A N Lane 1, L M Hays 1, N Tsvetkova 1, R E Feeney 1, L M Crowe 1, J H Crowe 1
PMCID: PMC1300901  PMID: 10827996

Abstract

The (1)H- and (13)C-NMR spectra of antifreeze glycoprotein fractions 1-5 from Antarctic cod have been assigned, and the dynamics have been measured using (13)C relaxation at two temperatures. The chemical shifts and absence of non-sequential (1)H-(1)H NOEs are inconsistent with a folded, compact structure. (13)C relaxation measurements show that the protein has no significant long-range order, and that the local correlation times are adequately described by a random coil model. Hydroxyl protons of the sugar residues were observed at low temperature, and the presence of exchange-mediated ROEs to the sugar indicate extensive hydration. The conformational properties of AFGP1-5 are compared with those of the previously examined 14-mer analog AFGP8, which contains proline residues in place of some alanine residues (Lane, A. N., L. M. Hays, R. E. Feeney, L. M. Crowe, and J. H. Crowe. 1998. Protein Sci. 7:1555-1563). The infrared (IR) spectra of AFGP8 and AFGP1-5 in the amide I region are quite different. The presence of a wide distribution of backbone torsion angles in AFGP1-5 leads to a rich spectrum of frequencies in the IR spectrum, as interconversion among conformational states is slow on the IR frequency time scale. However, these transitions are fast on the NMR chemical shift time scales. The restricted motions for AFGP8 may imply a narrower distribution of possible o, psi angles, as is observed in the IR spectrum. This has significance for attempts to quantify secondary structures of proteins by IR in the presence of extensive loops.

Full Text

The Full Text of this article is available as a PDF (161.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. I., Feeney R. E., Osuga D. T., Yeh Y. Antifreeze glycoproteins from an Antarctic fish. Quasi-elastic light scattering studies of the hydrodynamic conformations of antifreeze glycoproteins. J Biol Chem. 1975 May 10;250(9):3344–3347. [PubMed] [Google Scholar]
  2. Alexandrovich A., Sanderson M. R., Moolenaar G. F., Goosen N., Lane A. N. NMR assignments and secondary structure of the UvrC binding domain of UvrB. FEBS Lett. 1999 May 21;451(2):181–185. doi: 10.1016/s0014-5793(99)00542-6. [DOI] [PubMed] [Google Scholar]
  3. Allison S. D., Dong A., Carpenter J. F. Counteracting effects of thiocyanate and sucrose on chymotrypsinogen secondary structure and aggregation during freezing, drying, and rehydration. Biophys J. 1996 Oct;71(4):2022–2032. doi: 10.1016/S0006-3495(96)79400-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burcham T. S., Osuga D. T., Yeh Y., Feeney R. E. A kinetic description of antifreeze glycoprotein activity. J Biol Chem. 1986 May 15;261(14):6390–6397. [PubMed] [Google Scholar]
  5. Bush C. A., Feeney R. E. Conformation of the glycotripeptide repeating unit of antifreeze glycoprotein of polar fish as determined from the fully assigned proton n.m.r. spectrum. Int J Pept Protein Res. 1986 Oct;28(4):386–397. doi: 10.1111/j.1399-3011.1986.tb03270.x. [DOI] [PubMed] [Google Scholar]
  6. Bush C. A., Ralapati S., Matson G. M., Yamasaki R. B., Osuga D. T., Yeh Y., Feeney R. E. Conformation of the antifreeze glycoprotein of polar fish. Arch Biochem Biophys. 1984 Aug 1;232(2):624–631. doi: 10.1016/0003-9861(84)90582-4. [DOI] [PubMed] [Google Scholar]
  7. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  8. Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
  9. Clore G. M., Driscoll P. C., Wingfield P. T., Gronenborn A. M. Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry. 1990 Aug 14;29(32):7387–7401. doi: 10.1021/bi00484a006. [DOI] [PubMed] [Google Scholar]
  10. Davies P. L., Sykes B. D. Antifreeze proteins. Curr Opin Struct Biol. 1997 Dec;7(6):828–834. doi: 10.1016/s0959-440x(97)80154-6. [DOI] [PubMed] [Google Scholar]
  11. DeVries A. L., Komatsu S. K., Feeney R. E. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem. 1970 Jun 10;245(11):2901–2908. [PubMed] [Google Scholar]
  12. Dong A. C., Huang P., Caughey W. S. Redox-dependent changes in beta-extended chain and turn structures of cytochrome c in water solution determined by second derivative amide I infrared spectra. Biochemistry. 1992 Jan 14;31(1):182–189. doi: 10.1021/bi00116a027. [DOI] [PubMed] [Google Scholar]
  13. Dong A., Caughey W. S., Du Clos T. W. Effects of calcium, magnesium, and phosphorylcholine on secondary structures of human C-reactive protein and serum amyloid P component observed by infrared spectroscopy. J Biol Chem. 1994 Mar 4;269(9):6424–6430. [PubMed] [Google Scholar]
  14. Dong A., Huang P., Caughey W. S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990 Apr 3;29(13):3303–3308. doi: 10.1021/bi00465a022. [DOI] [PubMed] [Google Scholar]
  15. Dong A., Prestrelski S. J., Allison S. D., Carpenter J. F. Infrared spectroscopic studies of lyophilization- and temperature-induced protein aggregation. J Pharm Sci. 1995 Apr;84(4):415–424. doi: 10.1002/jps.2600840407. [DOI] [PubMed] [Google Scholar]
  16. Gyi J. I., Lane A. N., Conn G. L., Brown T. The orientation and dynamics of the C2'-OH and hydration of RNA and DNA.RNA hybrids. Nucleic Acids Res. 1998 Jul 1;26(13):3104–3110. doi: 10.1093/nar/26.13.3104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harding M. M., Ward L. G., Haymet A. D. Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition. Eur J Biochem. 1999 Sep;264(3):653–665. doi: 10.1046/j.1432-1327.1999.00617.x. [DOI] [PubMed] [Google Scholar]
  18. Kördel J., Skelton N. J., Akke M., Palmer A. G., 3rd, Chazin W. J. Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Biochemistry. 1992 May 26;31(20):4856–4866. doi: 10.1021/bi00135a017. [DOI] [PubMed] [Google Scholar]
  19. Lane A. N., Hays L. M., Feeney R. E., Crowe L. M., Crowe J. H. Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod. Protein Sci. 1998 Jul;7(7):1555–1563. doi: 10.1002/pro.5560070709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leroy J. L., Broseta D., Guéron M. Proton exchange and base-pair kinetics of poly(rA).poly(rU) and poly(rI).poly(rC). J Mol Biol. 1985 Jul 5;184(1):165–178. doi: 10.1016/0022-2836(85)90050-6. [DOI] [PubMed] [Google Scholar]
  21. Luginbühl P., Pervushin K. V., Iwai H., Wüthrich K. Anisotropic molecular rotational diffusion in 15N spin relaxation studies of protein mobility. Biochemistry. 1997 Jun 17;36(24):7305–7312. doi: 10.1021/bi963161h. [DOI] [PubMed] [Google Scholar]
  22. Marsden I., Jin C., Liao X. Structural changes in the region directly adjacent to the DNA-binding helix highlight a possible mechanism to explain the observed changes in the sequence-specific binding of winged helix proteins. J Mol Biol. 1998 May 1;278(2):293–299. doi: 10.1006/jmbi.1998.1703. [DOI] [PubMed] [Google Scholar]
  23. McIntosh P. B., Taylor I. A., Frenkiel T. A., Smerdon S. J., Lane A. N. The influence of DNA binding on the backbone dynamics of the yeast cell-cycle protein Mbp1. J Biomol NMR. 2000 Mar;16(3):183–196. doi: 10.1023/a:1008374129366. [DOI] [PubMed] [Google Scholar]
  24. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  25. Poppe L., van Halbeek H. NMR spectroscopy of hydroxyl protons in supercooled carbohydrates. Nat Struct Biol. 1994 Apr;1(4):215–216. doi: 10.1038/nsb0494-215. [DOI] [PubMed] [Google Scholar]
  26. Prestrelski S. J., Byler D. M., Liebman M. N. Comparison of various molecular forms of bovine trypsin: correlation of infrared spectra with X-ray crystal structures. Biochemistry. 1991 Jan 8;30(1):133–143. doi: 10.1021/bi00215a020. [DOI] [PubMed] [Google Scholar]
  27. Sane S. U., Cramer S. M., Przybycien T. M. A holistic approach to protein secondary structure characterization using amide I band Raman spectroscopy. Anal Biochem. 1999 May 1;269(2):255–272. doi: 10.1006/abio.1999.4034. [DOI] [PubMed] [Google Scholar]
  28. Schurr J. M., Babcock H. P., Fujimoto B. S. A test of the model-free formulas. Effects of anisotropic rotational diffusion and dimerization. J Magn Reson B. 1994 Nov;105(3):211–224. doi: 10.1006/jmrb.1994.1127. [DOI] [PubMed] [Google Scholar]
  29. Schwalbe H., Fiebig K. M., Buck M., Jones J. A., Grimshaw S. B., Spencer A., Glaser S. J., Smith L. J., Dobson C. M. Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry. 1997 Jul 22;36(29):8977–8991. doi: 10.1021/bi970049q. [DOI] [PubMed] [Google Scholar]
  30. Sreerama N., Woody R. W. Molecular dynamics simulations of polypeptide conformations in water: A comparison of alpha, beta, and poly(pro)II conformations. Proteins. 1999 Sep 1;36(4):400–406. [PubMed] [Google Scholar]
  31. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  32. Szyperski T., Luginbühl P., Otting G., Güntert P., Wüthrich K. Protein dynamics studied by rotating frame 15N spin relaxation times. J Biomol NMR. 1993 Mar;3(2):151–164. doi: 10.1007/BF00178259. [DOI] [PubMed] [Google Scholar]
  33. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]
  34. Yeh Yin, Feeney Robert E. Antifreeze Proteins: Structures and Mechanisms of Function. Chem Rev. 1996 Mar 28;96(2):601–618. doi: 10.1021/cr950260c. [DOI] [PubMed] [Google Scholar]
  35. van Heijenoort C., Penin F., Guittet E. Dynamics of the DNA binding domain of the fructose repressor from the analysis of linear correlations between the 15N-1H bond spectral densities obtained by nuclear magnetic resonance spectroscopy. Biochemistry. 1998 Apr 14;37(15):5060–5073. doi: 10.1021/bi971706h. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES