Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3208–3217. doi: 10.1016/S0006-3495(00)76857-3

Thermal denaturing of bacteriorhodopsin by X-Ray scattering from oriented purple membranes.

J Müller 1, C Münster 1, T Salditt 1
PMCID: PMC1300902  PMID: 10827997

Abstract

We present a temperature-dependent x-ray diffraction study of thin films of purple membranes (PMs) with the native membrane protein bacteriorhodopsin (BR). The high degree of alignment with respect to the silicon substrates allows for the application of modern interface-sensitive scattering techniques. Here we focus on the structural changes of BR in PMs at the thermal denaturing transition. A partial unfolding of the helices is observed rather than the complete unfolding process known from helix to coil transitions. While BR remains threaded into the lipid bilayer in the denatured state, changes in the short-range lateral structures are associated with the partial unfolding of the transmembrane helices.

Full Text

The Full Text of this article is available as a PDF (309.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin R. L. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8069–8072. doi: 10.1073/pnas.83.21.8069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belrhali H., Nollert P., Royant A., Menzel C., Rosenbusch J. P., Landau E. M., Pebay-Peyroula E. Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. Structure. 1999 Aug 15;7(8):909–917. doi: 10.1016/s0969-2126(99)80118-x. [DOI] [PubMed] [Google Scholar]
  3. Birge R. R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim Biophys Acta. 1990 Apr 26;1016(3):293–327. doi: 10.1016/0005-2728(90)90163-x. [DOI] [PubMed] [Google Scholar]
  4. Brouillette C. G., Muccio D. D., Finney T. K. pH dependence of bacteriorhodopsin thermal unfolding. Biochemistry. 1987 Nov 17;26(23):7431–7438. doi: 10.1021/bi00397a035. [DOI] [PubMed] [Google Scholar]
  5. Cladera J., Galisteo M. L., Sabés M., Mateo P. L., Padrós E. The role of retinal in the thermal stability of the purple membrane. Eur J Biochem. 1992 Jul 15;207(2):581–585. doi: 10.1111/j.1432-1033.1992.tb17084.x. [DOI] [PubMed] [Google Scholar]
  6. Dumont M. E., Trewhella J., Engelman D. M., Richards F. M. Stability of transmembrane regions in bacteriorhodopsin studied by progressive proteolysis. J Membr Biol. 1985;88(3):233–247. doi: 10.1007/BF01871088. [DOI] [PubMed] [Google Scholar]
  7. Fischer U., Oesterhelt D. Chromophore equilibria in bacteriorhodopsin. Biophys J. 1979 Nov;28(2):211–230. doi: 10.1016/S0006-3495(79)85172-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
  9. Kahn T. W., Sturtevant J. M., Engelman D. M. Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin. Biochemistry. 1992 Sep 22;31(37):8829–8839. doi: 10.1021/bi00152a020. [DOI] [PubMed] [Google Scholar]
  10. London E., Khorana H. G. Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures. J Biol Chem. 1982 Jun 25;257(12):7003–7011. [PubMed] [Google Scholar]
  11. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science. 1999 Oct 8;286(5438):255–261. doi: 10.1126/science.286.5438.255. [DOI] [PubMed] [Google Scholar]
  12. Muccio D. D., Cassim J. Y. Interpretations of the effects of pH on the spectra of purple membrane. J Mol Biol. 1979 Dec 15;135(3):595–609. doi: 10.1016/0022-2836(79)90166-9. [DOI] [PubMed] [Google Scholar]
  13. Müller D. J., Schoenenberger C. A., Schabert F., Engel A. Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscope: a review. J Struct Biol. 1997 Jul;119(2):149–157. doi: 10.1006/jsbi.1997.3878. [DOI] [PubMed] [Google Scholar]
  14. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971 Sep 29;233(39):149–152. doi: 10.1038/newbio233149a0. [DOI] [PubMed] [Google Scholar]
  15. Singer S. J. The structure and insertion of integral proteins in membranes. Annu Rev Cell Biol. 1990;6:247–296. doi: 10.1146/annurev.cb.06.110190.001335. [DOI] [PubMed] [Google Scholar]
  16. Taneva S. G., Caaveiro J. M., Muga A., Goñi F. M. A pathway for the thermal destabilization of bacteriorhodopsin. FEBS Lett. 1995 Jul 3;367(3):297–300. doi: 10.1016/0014-5793(95)00570-y. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES