Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3218–3226. doi: 10.1016/S0006-3495(00)76858-5

Solubility of fluoromethemoglobin S: effect of phosphate and temperature on polymerization.

M E Yohe 1, K M Sheffield 1, I Mukerji 1
PMCID: PMC1300903  PMID: 10827998

Abstract

The polymerization properties of the fully liganded fluoromet derivative of hemoglobin S (FmetHb S) were investigated by electron microscopy and absorption spectroscopy. Polymerization progress curves, as measured by increasing sample turbidity at 700 nm, exhibit a delay time (t(d)) consistent with the double nucleation mechanism. The pattern of fiber growth, as monitored by electron microscopy, is also indicative of a heterogeneous nucleation process, and dimensions of the fibers were found to be comparable to that of deoxyHb S. The polymerization rate constant (1/t(d)) depends exponentially on Hb S concentration, and the size of the homogeneous and heterogeneous nuclei also depend on FmetHb S concentration. As for deoxyHb S, higher concentrations of protein and phosphate favor fiber formation, while lower temperatures inhibit polymerization. Solubility experiments reveal, however, that eight times more FmetHb S is required for polymerization. The current studies further show that reaction order is independent of phosphate concentration if Hb S activity and not concentration is considered. The allosteric effector, inositol hexaphosphate (IHP), promotes fiber formation, and temperature-dependent reaggregation of FmetHb S suggests that IHP stabilizes pregelation aggregates. These studies show that FmetHb S resembles deoxyHb S in many of its polymerization properties; however, IHP-bound FmetHb S potentially provides a unique avenue for future studies of the early stages of Hb S polymerization and the effect of tertiary and quaternary protein structure on the polymerization process.

Full Text

The Full Text of this article is available as a PDF (178.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi K., Asakura T. Effect of liganded hemoglobin S and hemoglobin A on the aggregation of deoxy-hemoglobin S. J Biol Chem. 1982 May 25;257(10):5738–5744. [PubMed] [Google Scholar]
  2. Adachi K., Asakura T. Nucleation-controlled aggregation of deoxyhemoglobin S. Possible difference in the size of nuclei in different phosphate concentrations. J Biol Chem. 1979 Aug 25;254(16):7765–7771. [PubMed] [Google Scholar]
  3. Adachi K., Kim J., Shibayama N. Polymerization and solubility of Ni(II)-Fe(II) hybrid Hb S. Biochim Biophys Acta. 1991 Sep 20;1079(3):268–272. doi: 10.1016/0167-4838(91)90068-b. [DOI] [PubMed] [Google Scholar]
  4. Behe M. J., Englander S. W. Sickle hemoglobin gelation. Reaction order and critical nucleus size. Biophys J. 1978 Jul;23(1):129–145. doi: 10.1016/S0006-3495(78)85438-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bookchin R. M., Nagel R. L. Ligand-induced conformational dependence of hemoglobin in sickling interactios. J Mol Biol. 1971 Sep 14;60(2):263–270. doi: 10.1016/0022-2836(71)90292-0. [DOI] [PubMed] [Google Scholar]
  6. Briehl R. W., Mann E. S., Josephs R. Length distributions of hemoglobin S fibers. J Mol Biol. 1990 Feb 20;211(4):693–698. doi: 10.1016/0022-2836(90)90070-3. [DOI] [PubMed] [Google Scholar]
  7. Coletta M., Ascenzi P., Santucci R., Bertollini A., Amiconi G. Interaction of inositol hexakisphosphate with liganded ferrous human hemoglobin. Direct evidence for two functionally operative binding sites. Biochim Biophys Acta. 1993 Mar 26;1162(3):309–314. doi: 10.1016/0167-4838(93)90295-3. [DOI] [PubMed] [Google Scholar]
  8. Di Iorio E. E. Preparation of derivatives of ferrous and ferric hemoglobin. Methods Enzymol. 1981;76:57–72. doi: 10.1016/0076-6879(81)76114-7. [DOI] [PubMed] [Google Scholar]
  9. Eaton W. A., Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279. doi: 10.1016/s0065-3233(08)60287-9. [DOI] [PubMed] [Google Scholar]
  10. Fasanmade A. A. Gelation kinetics of dilute hemoglobin from sickle cell anemia patients. Hemoglobin. 1996 Nov;20(4):415–428. doi: 10.3109/03630269609005845. [DOI] [PubMed] [Google Scholar]
  11. Fermi G., Perutz M. F. Structure of human fluoromethaemoglobin with inositol hexaphosphate. J Mol Biol. 1977 Aug 15;114(3):421–431. doi: 10.1016/0022-2836(77)90259-5. [DOI] [PubMed] [Google Scholar]
  12. Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques. J Mol Biol. 1985 Jun 25;183(4):591–610. doi: 10.1016/0022-2836(85)90174-3. [DOI] [PubMed] [Google Scholar]
  13. Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol. 1985 Jun 25;183(4):611–631. doi: 10.1016/0022-2836(85)90175-5. [DOI] [PubMed] [Google Scholar]
  14. Harrington D. J., Adachi K., Royer W. E., Jr The high resolution crystal structure of deoxyhemoglobin S. J Mol Biol. 1997 Sep 26;272(3):398–407. doi: 10.1006/jmbi.1997.1253. [DOI] [PubMed] [Google Scholar]
  15. Hofrichter J., Ross P. D., Eaton W. A. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4864–4868. doi: 10.1073/pnas.71.12.4864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hofrichter J., Ross P. D., Eaton W. A. Supersaturation in sickle cell hemoglobin solutions. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3035–3039. doi: 10.1073/pnas.73.9.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huisman T. H., Dozy A. M. Studies on the heterogeneity of hemoglobin. IX. The use of Tris(hydroxymethyl)aminomethanehcl buffers in the anion-exchange chromatography of hemoglobins. J Chromatogr. 1965 Jul;19(1):160–169. doi: 10.1016/s0021-9673(01)99434-8. [DOI] [PubMed] [Google Scholar]
  18. Jayaraman V., Rodgers K. R., Mukerji I., Spiro T. G. R and T states of fluoromethemoglobin probed by ultraviolet resonance Raman spectroscopy. Biochemistry. 1993 May 4;32(17):4547–4551. doi: 10.1021/bi00068a009. [DOI] [PubMed] [Google Scholar]
  19. Mehanna A. S., Abraham D. J. Comparison of crystal and solution hemoglobin binding of selected antigelling agents and allosteric modifiers. Biochemistry. 1990 Apr 24;29(16):3944–3952. doi: 10.1021/bi00468a022. [DOI] [PubMed] [Google Scholar]
  20. Minton A. P. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem. 1983;55(2):119–140. doi: 10.1007/BF00673707. [DOI] [PubMed] [Google Scholar]
  21. Mozzarelli A., Hofrichter J., Eaton W. A. Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo. Science. 1987 Jul 31;237(4814):500–506. doi: 10.1126/science.3603036. [DOI] [PubMed] [Google Scholar]
  22. Padlan E. A., Love W. E. Refined crystal structure of deoxyhemoglobin S. II. Molecular interactions in the crystal. J Biol Chem. 1985 Jul 15;260(14):8280–8291. [PubMed] [Google Scholar]
  23. Perutz M. F., Heidner E. J., Ladner J. E., Beetlestone J. G., Ho C., Slade E. F. Influence of globin structure on the state of the heme. 3. Changes in heme spectra accompanying allosteric transitions in methemoglobin and their implications for heme-heme interaction. Biochemistry. 1974 May 7;13(10):2187–2200. doi: 10.1021/bi00707a028. [DOI] [PubMed] [Google Scholar]
  24. Riggs A. Preparation of blood hemoglobins of vertebrates. Methods Enzymol. 1981;76:5–29. doi: 10.1016/0076-6879(81)76111-1. [DOI] [PubMed] [Google Scholar]
  25. Ross P. D., Minton A. P. Analysis of non-ideal behavior in concentrated hemoglobin solutions. J Mol Biol. 1977 May 25;112(3):437–452. doi: 10.1016/s0022-2836(77)80191-5. [DOI] [PubMed] [Google Scholar]
  26. Wellems T. E., Josephs R. Crystallization of deoxyhemoglobin S by fiber alignment and fusion. J Mol Biol. 1979 Dec 15;135(3):651–674. doi: 10.1016/0022-2836(79)90170-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES