Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3227–3239. doi: 10.1016/S0006-3495(00)76859-7

Multiple geminate ligand recombinations in human hemoglobin.

R M Esquerra 1, R A Goldbeck 1, S H Reaney 1, A M Batchelder 1, Y Wen 1, J W Lewis 1, D S Kliger 1
PMCID: PMC1300904  PMID: 10827999

Abstract

The geminate ligand recombination reactions of photolyzed carbonmonoxyhemoglobin were studied in a nanosecond double-excitation-pulse time-resolved absorption experiment. The second laser pulse, delayed by intervals as long as 400 ns after the first, provided a measure of the geminate kinetics by rephotolyzing ligands that have recombined during the delay time. The peak-to-trough magnitude of the Soret band photolysis difference spectrum measured as a function of the delay between excitation pulses showed that the room temperature kinetics of geminate recombination in adult human hemoglobin are best described by two exponential processes, with lifetimes of 36 and 162 ns. The relative amounts of bimolecular recombination to T- and R-state hemoglobins and the temperature dependence of the submicrosecond kinetics between 283 and 323 K are also consistent with biexponential kinetics for geminate recombination. These results are discussed in terms of two models: geminate recombination kinetics modulated by concurrent protein relaxation and heterogeneous kinetics arising from alpha and beta chain differences.

Full Text

The Full Text of this article is available as a PDF (132.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberding N., Chan S. S., Eisenstein L., Frauenfelder H., Good D., Gunsalus I. C., Nordlund T. M., Perutz M. F., Reynolds A. H., Sorensen L. B. Binding of carbon monoxide to isolated hemoglobin chains. Biochemistry. 1978 Jan 10;17(1):43–51. doi: 10.1021/bi00594a007. [DOI] [PubMed] [Google Scholar]
  2. Alpert B., Banerjee R., Lindqvist L. The kinetics of conformational changes in hemoglobin, studied by laser photolysis. Proc Natl Acad Sci U S A. 1974 Feb;71(2):558–562. doi: 10.1073/pnas.71.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ansari A., Berendzen J., Bowne S. F., Frauenfelder H., Iben I. E., Sauke T. B., Shyamsunder E., Young R. D. Protein states and proteinquakes. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5000–5004. doi: 10.1073/pnas.82.15.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ansari A., DiIorio E. E., Dlott D. D., Frauenfelder H., Iben I. E., Langer P., Roder H., Sauke T. B., Shyamsunder E. Ligand binding to heme proteins: relevance of low-temperature data. Biochemistry. 1986 Jun 3;25(11):3139–3146. doi: 10.1021/bi00359a011. [DOI] [PubMed] [Google Scholar]
  5. Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. Photoselection in polarized photolysis experiments on heme proteins. Biophys J. 1993 Mar;64(3):852–868. doi: 10.1016/S0006-3495(93)81446-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ansari A., Szabo A. Theory of photoselection by intense light pulses. Influence of reorientational dynamics and chemical kinetics on absorbance measurements. Biophys J. 1993 Mar;64(3):838–851. doi: 10.1016/S0006-3495(93)81445-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  8. Baldwin J., Chothia C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol. 1979 Apr 5;129(2):175–220. doi: 10.1016/0022-2836(79)90277-8. [DOI] [PubMed] [Google Scholar]
  9. Bandyopadhyay D., Magde D., Traylor T. G., Sharma V. S. Quaternary structure and geminate recombination in hemoglobin: flow-flash studies on alpha 2CO beta 2 and alpha 2 beta 2CO. Biophys J. 1992 Sep;63(3):673–681. doi: 10.1016/S0006-3495(92)81652-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Björling S. C., Goldbeck R. A., Paquette S. J., Milder S. J., Kliger D. S. Allosteric intermediates in hemoglobin. 1. Nanosecond time-resolved circular dichroism spectroscopy. Biochemistry. 1996 Jul 2;35(26):8619–8627. doi: 10.1021/bi952247s. [DOI] [PubMed] [Google Scholar]
  11. Carlson M. L., Regan R. M., Gibson Q. H. Distal cavity fluctuations in myoglobin: protein motion and ligand diffusion. Biochemistry. 1996 Jan 30;35(4):1125–1136. doi: 10.1021/bi951767k. [DOI] [PubMed] [Google Scholar]
  12. Carver T. E., Rohlfs R. J., Olson J. S., Gibson Q. H., Blackmore R. S., Springer B. A., Sligar S. G. Analysis of the kinetic barriers for ligand binding to sperm whale myoglobin using site-directed mutagenesis and laser photolysis techniques. J Biol Chem. 1990 Nov 15;265(32):20007–20020. [PubMed] [Google Scholar]
  13. Duddell D. A., Morris R. J., Richards J. T. Nanosecond laser photolysis of aqueous carbon monoxy- and oxyhaemoglobin. Biochim Biophys Acta. 1980 Jan 24;621(1):1–8. doi: 10.1016/0005-2795(80)90056-2. [DOI] [PubMed] [Google Scholar]
  14. Esquerra R. M., Goldbeck R. A., Kim-Shapiro D. B., Kliger D. S. Spectroscopic evidence for nanosecond protein relaxation after photodissociation of myoglobin-CO. Biochemistry. 1998 Dec 15;37(50):17527–17536. doi: 10.1021/bi9814437. [DOI] [PubMed] [Google Scholar]
  15. Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
  16. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  17. Friedman J. M., Lyons K. B. Transient Raman study of CO-haemoprotein photolysis: origin of the quantum yield. Nature. 1980 Apr 10;284(5756):570–572. doi: 10.1038/284570a0. [DOI] [PubMed] [Google Scholar]
  18. Friedman J. M. Structure, dynamics, and reactivity in hemoglobin. Science. 1985 Jun 14;228(4705):1273–1280. doi: 10.1126/science.4001941. [DOI] [PubMed] [Google Scholar]
  19. Friedman J. M. Time-resolved resonance Raman spectroscopy as probe of structure, dynamics, and reactivity in hemoglobin. Methods Enzymol. 1994;232:205–231. doi: 10.1016/0076-6879(94)32049-7. [DOI] [PubMed] [Google Scholar]
  20. Geraci G., Parkhurst L. J., Gibson Q. H. Preparation and properties of alpha- and beta-chains from human hemoglobin. J Biol Chem. 1969 Sep 10;244(17):4664–4667. [PubMed] [Google Scholar]
  21. Goldbeck R. A., Kim-Shapiro D. B., Kliger D. S. Fast natural and magnetic circular dichroism spectroscopy. Annu Rev Phys Chem. 1997;48:453–479. doi: 10.1146/annurev.physchem.48.1.453. [DOI] [PubMed] [Google Scholar]
  22. Goldbeck R. A., Kliger D. S. Nanosecond time-resolved absorption and polarization dichroism spectroscopies. Methods Enzymol. 1993;226:147–177. doi: 10.1016/0076-6879(93)26009-x. [DOI] [PubMed] [Google Scholar]
  23. Goldbeck R. A., Paquette S. J., Björling S. C., Kliger D. S. Allosteric intermediates in hemoglobin. 2. Kinetic modeling of HbCO photolysis. Biochemistry. 1996 Jul 2;35(26):8628–8639. doi: 10.1021/bi952248k. [DOI] [PubMed] [Google Scholar]
  24. Henry E. R., Jones C. M., Hofrichter J., Eaton W. A. Can a two-state MWC allosteric model explain hemoglobin kinetics? Biochemistry. 1997 May 27;36(21):6511–6528. doi: 10.1021/bi9619177. [DOI] [PubMed] [Google Scholar]
  25. Henry E. R., Sommer J. H., Hofrichter J., Eaton W. A. Geminate recombination of carbon monoxide to myoglobin. J Mol Biol. 1983 May 25;166(3):443–451. doi: 10.1016/s0022-2836(83)80094-1. [DOI] [PubMed] [Google Scholar]
  26. Hofrichter J., Henry E. R., Sommer J. H., Deutsch R., Ikeda-Saito M., Yonetani T., Eaton W. A. Nanosecond optical spectra of iron-cobalt hybrid hemoglobins: geminate recombination, conformational changes, and intersubunit communication. Biochemistry. 1985 May 21;24(11):2667–2679. doi: 10.1021/bi00332a012. [DOI] [PubMed] [Google Scholar]
  27. Hofrichter J., Henry E. R., Szabo A., Murray L. P., Ansari A., Jones C. M., Coletta M., Falcioni G., Brunori M., Eaton W. A. Dynamics of the quaternary conformational change in trout hemoglobin. Biochemistry. 1991 Jul 2;30(26):6583–6598. doi: 10.1021/bi00240a031. [DOI] [PubMed] [Google Scholar]
  28. Hofrichter J., Sommer J. H., Henry E. R., Eaton W. A. Nanosecond absorption spectroscopy of hemoglobin: elementary processes in kinetic cooperativity. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2235–2239. doi: 10.1073/pnas.80.8.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hu X., Frei H., Spiro T. G. Nanosecond step-scan FTIR spectroscopy of hemoglobin: ligand recombination and protein conformational changes. Biochemistry. 1996 Oct 8;35(40):13001–13005. doi: 10.1021/bi961522n. [DOI] [PubMed] [Google Scholar]
  30. Huang J., Ridsdale A., Wang J., Friedman J. M. Kinetic hole burning, hole filling, and conformational relaxation in heme proteins: direct evidence for the functional significance of a hierarchy of dynamical processes. Biochemistry. 1997 Nov 25;36(47):14353–14365. doi: 10.1021/bi9700274. [DOI] [PubMed] [Google Scholar]
  31. Jayaraman V., Rodgers K. R., Mukerji I., Spiro T. G. Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates. Science. 1995 Sep 29;269(5232):1843–1848. doi: 10.1126/science.7569921. [DOI] [PubMed] [Google Scholar]
  32. Jones C. M., Ansari A., Henry E. R., Christoph G. W., Hofrichter J., Eaton W. A. Speed of intersubunit communication in proteins. Biochemistry. 1992 Jul 28;31(29):6692–6702. doi: 10.1021/bi00144a008. [DOI] [PubMed] [Google Scholar]
  33. Lewis J. W., Kliger D. S. Rotational diffusion effects on absorbance measurements: limitations to the magic-angle approach. Photochem Photobiol. 1991 Dec;54(6):963–968. doi: 10.1111/j.1751-1097.1991.tb02117.x. [DOI] [PubMed] [Google Scholar]
  34. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  35. Mathews A. J., Rohlfs R. J., Olson J. S., Tame J., Renaud J. P., Nagai K. The effects of E7 and E11 mutations on the kinetics of ligand binding to R state human hemoglobin. J Biol Chem. 1989 Oct 5;264(28):16573–16583. [PubMed] [Google Scholar]
  36. Murray L. P., Hofrichter J., Henry E. R., Ikeda-Saito M., Kitagishi K., Yonetani T., Eaton W. A. The effect of quaternary structure on the kinetics of conformational changes and nanosecond geminate rebinding of carbon monoxide to hemoglobin. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2151–2155. doi: 10.1073/pnas.85.7.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Olson J. S., Andersen M. E., Gibson Q. H. The dissociation of the first oxygen molecule from some mammalian oxyhemoglobins. J Biol Chem. 1971 Oct 10;246(19):5919–5923. [PubMed] [Google Scholar]
  38. Olson J. S., Phillips G. N., Jr Kinetic pathways and barriers for ligand binding to myoglobin. J Biol Chem. 1996 Jul 26;271(30):17593–17596. doi: 10.1074/jbc.271.30.17593. [DOI] [PubMed] [Google Scholar]
  39. Olson J. S., Rohlfs R. J., Gibson Q. H. Ligand recombination to the alpha and beta subunits of human hemoglobin. J Biol Chem. 1987 Sep 25;262(27):12930–12938. [PubMed] [Google Scholar]
  40. Perutz M. F., Ladner J. E., Simon S. R., Ho C. Influence of globin structure on the state of the heme. I. Human deoxyhemoglobin. Biochemistry. 1974 May 7;13(10):2163–2173. doi: 10.1021/bi00707a026. [DOI] [PubMed] [Google Scholar]
  41. Perutz M. F. Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. Trends Biochem Sci. 1989 Feb;14(2):42–44. doi: 10.1016/0968-0004(89)90039-x. [DOI] [PubMed] [Google Scholar]
  42. Perutz M. F. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem. 1979;48:327–386. doi: 10.1146/annurev.bi.48.070179.001551. [DOI] [PubMed] [Google Scholar]
  43. Peterson E. S., Friedman J. M. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A. Biochemistry. 1998 Mar 31;37(13):4346–4357. doi: 10.1021/bi9708693. [DOI] [PubMed] [Google Scholar]
  44. Petrich J. W., Lambry J. C., Balasubramanian S., Lambright D. G., Boxer S. G., Martin J. L. Ultrafast measurements of geminate recombination of NO with site-specific mutants of human myoglobin. J Mol Biol. 1994 May 6;238(3):437–444. doi: 10.1006/jmbi.1994.1302. [DOI] [PubMed] [Google Scholar]
  45. Reisberg P. I., Olson J. S. Rates of isonitrile binding to the isolated alpha and beta subunits of human hemoglobin. J Biol Chem. 1980 May 10;255(9):4151–4158. [PubMed] [Google Scholar]
  46. Rohlfs R. J., Mathews A. J., Carver T. E., Olson J. S., Springer B. A., Egeberg K. D., Sligar S. G. The effects of amino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin. J Biol Chem. 1990 Feb 25;265(6):3168–3176. [PubMed] [Google Scholar]
  47. Rohlfs R. J., Olson J. S., Gibson Q. H. A comparison of the geminate recombination kinetics of several monomeric heme proteins. J Biol Chem. 1988 Feb 5;263(4):1803–1813. [PubMed] [Google Scholar]
  48. Smerdon S. J., Dodson G. G., Wilkinson A. J., Gibson Q. H., Blackmore R. S. Distal pocket polarity in ligand binding to myoglobin: structural and functional characterization of a threonine68(E11) mutant. Biochemistry. 1991 Jun 25;30(25):6252–6260. doi: 10.1021/bi00239a025. [DOI] [PubMed] [Google Scholar]
  49. Spiro T. G., Smulevich G., Su C. Probing protein structure and dynamics with resonance Raman spectroscopy: cytochrome c peroxidase and hemoglobin. Biochemistry. 1990 May 15;29(19):4497–4508. doi: 10.1021/bi00471a001. [DOI] [PubMed] [Google Scholar]
  50. Stetzkowski F., Banerjee R., Marden M. C., Beece D. K., Bowne S. F., Doster W., Eisenstein L., Frauenfelder H., Reinisch L., Shyamsunder E. Dynamics of dioxygen and carbon monoxide binding to soybean leghemoglobin. J Biol Chem. 1985 Jul 25;260(15):8803–8809. [PubMed] [Google Scholar]
  51. Sugita Y. Differences in spectra of alpha and beta chains of hemoglobin between isolated state and in tetramer. J Biol Chem. 1975 Feb 25;250(4):1251–1256. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES