Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3275–3285. doi: 10.1016/S0006-3495(00)76863-9

A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy.

L Schmitt 1, M Ludwig 1, H E Gaub 1, R Tampé 1
PMCID: PMC1300908  PMID: 10828003

Abstract

In recent years, the atomic force microscope (AFM) has contributed much to our understanding of the molecular forces involved in various high-affinity receptor-ligand systems. However, a universal anchor system for such measurements is still required. This would open up new possibilities for the study of biological recognition processes and for the establishment of high-throughput screening applications. One such candidate is the N-nitrilo-triacetic acid (NTA)/His-tag system, which is widely used in molecular biology to isolate and purify histidine-tagged fusion proteins. Here the histidine tag acts as a high-affinity recognition site for the NTA chelator. Accordingly, we have investigated the possibility of using this approach in single-molecule force measurements. Using a histidine-peptide as a model system, we have determined the binding force for various metal ions. At a loading rate of 0.5 microm/s, the determined forces varied from 22 +/- 4 to 58 +/- 5 pN. Most importantly, no interaction was detected for Ca(2+) and Mg(2+) up to concentrations of 10 mM. Furthermore, EDTA and a metal ion reloading step demonstrated the reversibility of the approach. Here the molecular interactions were turned off (EDTA) and on (metal reloading) in a switch-like fashion. Our results show that the NTA/His-tag system will expand the "molecular toolboxes" with which receptor-ligand systems can be investigated at the single-molecule level.

Full Text

The Full Text of this article is available as a PDF (195.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  2. Celia H., Wilson-Kubalek E., Milligan R. A., Teyton L. Structure and function of a membrane-bound murine MHC class I molecule. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5634–5639. doi: 10.1073/pnas.96.10.5634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dammer U., Hegner M., Anselmetti D., Wagner P., Dreier M., Huber W., Güntherodt H. J. Specific antigen/antibody interactions measured by force microscopy. Biophys J. 1996 May;70(5):2437–2441. doi: 10.1016/S0006-3495(96)79814-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dietrich C., Boscheinen O., Scharf K. D., Schmitt L., Tampé R. Functional immobilization of a DNA-binding protein at a membrane interface via histidine tag and synthetic chelator lipids. Biochemistry. 1996 Jan 30;35(4):1100–1105. doi: 10.1021/bi952305+. [DOI] [PubMed] [Google Scholar]
  5. Dietrich C., Schmitt L., Tampé R. Molecular organization of histidine-tagged biomolecules at self-assembled lipid interfaces using a novel class of chelator lipids. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9014–9018. doi: 10.1073/pnas.92.20.9014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dorn I. T., Eschrich R., Seemüller E., Guckenberger R., Tampé R. High-resolution AFM-imaging and mechanistic analysis of the 20 S proteasome. J Mol Biol. 1999 May 21;288(5):1027–1036. doi: 10.1006/jmbi.1999.2714. [DOI] [PubMed] [Google Scholar]
  7. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  9. Gritsch S., Neumaier K., Schmitt L., Tampé R. Engineered fusion molecules at chelator lipid interfaces imaged by reflection interference contrast microscopy (RICM). Biosens Bioelectron. 1995;10(9-10):805–812. doi: 10.1016/0956-5663(95)99219-b. [DOI] [PubMed] [Google Scholar]
  10. Hochuli E. Purification of recombinant proteins with metal chelate adsorbent. Genet Eng (N Y) 1990;12:87–98. doi: 10.1007/978-1-4613-0641-2_6. [DOI] [PubMed] [Google Scholar]
  11. Ill C. R., Keivens V. M., Hale J. E., Nakamura K. K., Jue R. A., Cheng S., Melcher E. D., Drake B., Smith M. C. A COOH-terminal peptide confers regiospecific orientation and facilitates atomic force microscopy of an IgG1. Biophys J. 1993 Mar;64(3):919–924. doi: 10.1016/S0006-3495(93)81452-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kubalek E. W., Le Grice S. F., Brown P. O. Two-dimensional crystallization of histidine-tagged, HIV-1 reverse transcriptase promoted by a novel nickel-chelating lipid. J Struct Biol. 1994 Sep-Oct;113(2):117–123. doi: 10.1006/jsbi.1994.1039. [DOI] [PubMed] [Google Scholar]
  13. Laibinis P. E., Hickman J. J., Wrighton M. S., Whitesides G. M. Orthogonal self-assembled monolayers: alkanethiols on gold and alkane carboxylic acids on alumina. Science. 1989 Aug 25;245(4920):845–847. doi: 10.1126/science.245.4920.845. [DOI] [PubMed] [Google Scholar]
  14. Lee G. U., Chrisey L. A., Colton R. J. Direct measurement of the forces between complementary strands of DNA. Science. 1994 Nov 4;266(5186):771–773. doi: 10.1126/science.7973628. [DOI] [PubMed] [Google Scholar]
  15. Ludwig M., Dettmann W., Gaub H. E. Atomic force microscope imaging contrast based on molecular recognition. Biophys J. 1997 Jan;72(1):445–448. doi: 10.1016/S0006-3495(97)78685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  17. Moy V. T., Florin E. L., Gaub H. E. Intermolecular forces and energies between ligands and receptors. Science. 1994 Oct 14;266(5183):257–259. doi: 10.1126/science.7939660. [DOI] [PubMed] [Google Scholar]
  18. Rief M., Clausen-Schaumann H., Gaub H. E. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol. 1999 Apr;6(4):346–349. doi: 10.1038/7582. [DOI] [PubMed] [Google Scholar]
  19. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  20. Rief M., Gautel M., Schemmel A., Gaub H. E. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys J. 1998 Dec;75(6):3008–3014. doi: 10.1016/S0006-3495(98)77741-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rief M., Pascual J., Saraste M., Gaub H. E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol. 1999 Feb 19;286(2):553–561. doi: 10.1006/jmbi.1998.2466. [DOI] [PubMed] [Google Scholar]
  22. Rief M, Oesterhelt F, Heymann B, Gaub HE. Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy. Science. 1997 Feb 28;275(5304):1295–1297. doi: 10.1126/science.275.5304.1295. [DOI] [PubMed] [Google Scholar]
  23. Sigal G. B., Bamdad C., Barberis A., Strominger J., Whitesides G. M. A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal Chem. 1996 Feb 1;68(3):490–497. doi: 10.1021/ac9504023. [DOI] [PubMed] [Google Scholar]
  24. Vénien-Bryan C., Balavoine F., Toussaint B., Mioskowski C., Hewat E. A., Helme B., Vignais P. M. Structural study of the response regulator HupR from Rhodobacter capsulatus. Electron microscopy of two-dimensional crystals on a nickel-chelating lipid. J Mol Biol. 1997 Dec 19;274(5):687–692. doi: 10.1006/jmbi.1997.1431. [DOI] [PubMed] [Google Scholar]
  25. Wilson-Kubalek E. M., Brown R. E., Celia H., Milligan R. A. Lipid nanotubes as substrates for helical crystallization of macromolecules. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8040–8045. doi: 10.1073/pnas.95.14.8040. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES