Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jun;78(6):3286–3291. doi: 10.1016/S0006-3495(00)76864-0

Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes.

Y F Dufrêne 1
PMCID: PMC1300909  PMID: 10828004

Abstract

A new method is described for characterizing the physicochemical properties of native microbial cells by using atomic force microscopy (AFM) with chemically functionalized probes. Adhesion forces were measured, under deionized water, between probes and model substrata functionalized with alkanethiol self-assembled monolayers terminated with OH and CH(3) groups. These were found to be 6 +/- 2 nN (n = 1024), 0.9 +/- 0.4 nN, and approximately 0 nN, for CH(3)/CH(3), CH(3)/OH, and OH/OH surfaces, respectively, and were not significantly influenced by changes of ionic strength (0.1 M NaCl versus deionized water). This shows that functionalized probes are very sensitive to changes of surface hydrophobicity. Using OH- and CH(3)-terminated probes, patterns of rodlets, approximately 10 nm in diameter, were visualized, under physiological conditions, at the surface of spores of Phanerochaete chrysosporium. Multiple (1024) force-distance curves recorded over 500 x 500-nm areas at the spore surface, either in deionized water or in 0.1 M NaCl solutions, always showed no adhesion for both OH- and CH(3)-terminated probes. Control experiments indicated that the lack of adhesion is not due to transfer of cellular material onto the probe, but to the hydrophilic nature of the spore surface.

Full Text

The Full Text of this article is available as a PDF (163.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butt H. J., Downing K. H., Hansma P. K. Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophys J. 1990 Dec;58(6):1473–1480. doi: 10.1016/S0006-3495(90)82492-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Evans E. A. Analysis of adhesion of large vesicles to surfaces. Biophys J. 1980 Sep;31(3):425–431. doi: 10.1016/S0006-3495(80)85069-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frisbie C. D., Rozsnyai L. F., Noy A., Wrighton M. S., Lieber C. M. Functional group imaging by chemical force microscopy. Science. 1994 Sep 30;265(5181):2071–2074. doi: 10.1126/science.265.5181.2071. [DOI] [PubMed] [Google Scholar]
  4. Gerin P. A., Asther M., Sleytr U. B., Rouxhet P. G. Detection of rodlets in the outer wall region of conidiospores of Phanerochaete chrysosporium. Can J Microbiol. 1994 May;40(5):412–416. doi: 10.1139/m94-068. [DOI] [PubMed] [Google Scholar]
  5. Gerin P. A., Dufrene Y., Bellon-Fontaine M. N., Asther M., Rouxhet P. G. Surface properties of the conidiospores of Phanerochaete chrysosporium and their relevance to pellet formation. J Bacteriol. 1993 Aug;175(16):5135–5144. doi: 10.1128/jb.175.16.5135-5144.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kasas S., Ikai A. A method for anchoring round shaped cells for atomic force microscope imaging. Biophys J. 1995 May;68(5):1678–1680. doi: 10.1016/S0006-3495(95)80344-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LeNeveu D. M., Rand R. P., Parsegian V. A. Measurement of forces between lecithin bilayers. Nature. 1976 Feb 19;259(5544):601–603. doi: 10.1038/259601a0. [DOI] [PubMed] [Google Scholar]
  8. Lee G. U., Chrisey L. A., Colton R. J. Direct measurement of the forces between complementary strands of DNA. Science. 1994 Nov 4;266(5186):771–773. doi: 10.1126/science.7973628. [DOI] [PubMed] [Google Scholar]
  9. Marra J., Israelachvili J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry. 1985 Aug 13;24(17):4608–4618. doi: 10.1021/bi00338a020. [DOI] [PubMed] [Google Scholar]
  10. Radmacher M., Fritz M., Kacher C. M., Cleveland J. P., Hansma P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J. 1996 Jan;70(1):556–567. doi: 10.1016/S0006-3495(96)79602-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Radmacher M., Tillamnn R. W., Fritz M., Gaub H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992 Sep 25;257(5078):1900–1905. doi: 10.1126/science.1411505. [DOI] [PubMed] [Google Scholar]
  12. Schabert F. A., Henn C., Engel A. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science. 1995 Apr 7;268(5207):92–94. doi: 10.1126/science.7701347. [DOI] [PubMed] [Google Scholar]
  13. Southam G., Firtel M., Blackford B. L., Jericho M. H., Xu W., Mulhern P. J., Beveridge T. J. Transmission electron microscopy, scanning tunneling microscopy, and atomic force microscopy of the cell envelope layers of the archaeobacterium Methanospirillum hungatei GP1. J Bacteriol. 1993 Apr;175(7):1946–1955. doi: 10.1128/jb.175.7.1946-1955.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weisenhorn A. L., Drake B., Prater C. B., Gould S. A., Hansma P. K., Ohnesorge F., Egger M., Heyn S. P., Gaub H. E. Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy. Biophys J. 1990 Nov;58(5):1251–1258. doi: 10.1016/S0006-3495(90)82465-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES