Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):1–13. doi: 10.1016/s0006-3495(00)76269-2

Evidence for myocardial ATP compartmentation from NMR inversion transfer analysis of creatine kinase fluxes.

F Joubert 1, B Gillet 1, J L Mazet 1, P Mateo 1, J Beloeil 1, J A Hoerter 1
PMCID: PMC1300911  PMID: 10866933

Abstract

The interpretation of creatine kinase (CK) flux measured by (31)P NMR magnetization transfer in vivo is complex because of the presence of competing reactions, metabolite compartmentation, and CK isozyme localization. In the isovolumic perfused rat heart, we considered the influence of both ATP compartmentation and ATP-P(i) exchange on the forward (F(f): PCr --> ATP) and reverse (F(r)) CK fluxes derived from complete analysis of inversion transfer. Although F(f) should equal F(r) because of the steady state, in both protocols when PCr (inv-PCr) or ATP (inv-ATP) was inverted and the contribution of ATP-P(i) was masked by saturation of P(i) (sat-P(i)), F(f)/F(r) significantly differed from 1 (0.80 +/- 0.06 or 1.32 +/- 0.06, respectively, n = 5). These discrepancies could be explained by a compartment of ATP (f(ATP)) not involved in CK. Consistently, neglecting ATP compartmentation in the analysis of CK in vitro results in an underestimation of F(f)/F(r) for inv-PCr and its overestimation for inv-ATP. Both protocols gave access to f(ATP) if the system was adequately analyzed. The fraction of ATP not involved in CK reaction in a heart performing medium work amounts to 20-33% of cellular ATP. Finally, the data suggest that the effect of sat-P(i) might not result only from the masking of ATP-P(i) exchange.

Full Text

The Full Text of this article is available as a PDF (164.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aliev M. K., Saks V. A. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration. Biophys J. 1997 Jul;73(1):428–445. doi: 10.1016/S0006-3495(97)78082-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asimakis G. K., Sordahl L. A. Intramitochondrial adenine nucleotides and energy-linked functions of heart mitochondria. Am J Physiol. 1981 Nov;241(5):H672–H678. doi: 10.1152/ajpheart.1981.241.5.H672. [DOI] [PubMed] [Google Scholar]
  3. Bittl J. A., DeLayre J., Ingwall J. S. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat. Biochemistry. 1987 Sep 22;26(19):6083–6090. doi: 10.1021/bi00393a021. [DOI] [PubMed] [Google Scholar]
  4. Bittl J. A., Ingwall J. S. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem. 1985 Mar 25;260(6):3512–3517. [PubMed] [Google Scholar]
  5. DeFuria R. R., Dygert M. K., Alachi G. M. Computer simulation of the P31 NMR equations governing the creatine kinase reaction. J Theor Biol. 1985 May 7;114(1):75–91. doi: 10.1016/s0022-5193(85)80256-3. [DOI] [PubMed] [Google Scholar]
  6. Degani H., Alger J. R., Shulman R. G., Petroff O. A., Prichard J. W. 31P magnetization transfer studies of creatine kinase kinetics in living rabbit brain. Magn Reson Med. 1987 Jul;5(1):1–12. doi: 10.1002/mrm.1910050102. [DOI] [PubMed] [Google Scholar]
  7. Degani H., Laughlin M., Campbell S., Shulman R. G. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study. Biochemistry. 1985 Sep 24;24(20):5510–5516. doi: 10.1021/bi00341a035. [DOI] [PubMed] [Google Scholar]
  8. Geisbuhler T., Altschuld R. A., Trewyn R. W., Ansel A. Z., Lamka K., Brierley G. P. Adenine nucleotide metabolism and compartmentalization in isolated adult rat heart cells. Circ Res. 1984 May;54(5):536–546. doi: 10.1161/01.res.54.5.536. [DOI] [PubMed] [Google Scholar]
  9. Hoerter J. A., Lauer C., Vassort G., Guéron M. Sustained function of normoxic hearts depleted in ATP and phosphocreatine: a 31P-NMR study. Am J Physiol. 1988 Aug;255(2 Pt 1):C192–C201. doi: 10.1152/ajpcell.1988.255.2.C192. [DOI] [PubMed] [Google Scholar]
  10. Hsieh P. S., Balaban R. S. Saturation and inversion transfer studies of creatine kinase kinetics in rabbit skeletal muscle in vivo. Magn Reson Med. 1988 May;7(1):56–64. doi: 10.1002/mrm.1910070107. [DOI] [PubMed] [Google Scholar]
  11. Humphrey S. M., Garlick P. B. NMR-visible ATP and Pi in normoxic and reperfused rat hearts: a quantitative study. Am J Physiol. 1991 Jan;260(1 Pt 2):H6–12. doi: 10.1152/ajpheart.1991.260.1.H6. [DOI] [PubMed] [Google Scholar]
  12. Kingsley-Hickman P. B., Sako E. Y., Mohanakrishnan P., Robitaille P. M., From A. H., Foker J. E., Uğurbil K. 31P NMR studies of ATP synthesis and hydrolysis kinetics in the intact myocardium. Biochemistry. 1987 Nov 17;26(23):7501–7510. doi: 10.1021/bi00397a045. [DOI] [PubMed] [Google Scholar]
  13. Koretsky A. P., Basus V. J., James T. L., Klein M. P., Weiner M. W. Detection of exchange reactions involving small metabolite pools using NMR magnetization transfer techniques: relevance to subcellular compartmentation of creatine kinase. Magn Reson Med. 1985 Dec;2(6):586–594. doi: 10.1002/mrm.1910020610. [DOI] [PubMed] [Google Scholar]
  14. Koretsky A. P., Wang S., Klein M. P., James T. L., Weiner M. W. 31P NMR saturation transfer measurements of phosphorus exchange reactions in rat heart and kidney in situ. Biochemistry. 1986 Jan 14;25(1):77–84. doi: 10.1021/bi00349a012. [DOI] [PubMed] [Google Scholar]
  15. Matthews P. M., Bland J. L., Gadian D. G., Radda G. K. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Biochim Biophys Acta. 1982 Nov 17;721(3):312–320. doi: 10.1016/0167-4889(82)90084-2. [DOI] [PubMed] [Google Scholar]
  16. McFarland E. W., Kushmerick M. J., Moerland T. S. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type. Biophys J. 1994 Nov;67(5):1912–1924. doi: 10.1016/S0006-3495(94)80674-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meyer R. A., Kuchmerick M. J., Brown T. R. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism. Am J Physiol. 1982 Jan;242(1):C1–11. doi: 10.1152/ajpcell.1982.242.1.C1. [DOI] [PubMed] [Google Scholar]
  18. Mora B. N., Narasimhan P. T., Ross B. D. 31P magnetization transfer studies in the monkey brain. Magn Reson Med. 1992 Jul;26(1):100–115. doi: 10.1002/mrm.1910260111. [DOI] [PubMed] [Google Scholar]
  19. Nunnally R. L., Hollis D. P. Adenosine triphosphate compartmentation in living hearts: a phosphorus nuclear magnetic resonance saturation transfer study. Biochemistry. 1979 Aug 7;18(16):3642–3646. doi: 10.1021/bi00583a032. [DOI] [PubMed] [Google Scholar]
  20. Soboll S., Bünger R. Compartmentation of adenine nucleotides in the isolated working guinea pig heart stimulated by noradrenaline. Hoppe Seylers Z Physiol Chem. 1981 Feb;362(2):125–132. doi: 10.1515/bchm2.1981.362.1.125. [DOI] [PubMed] [Google Scholar]
  21. Spencer R. G., Balschi J. A., Leigh J. S., Jr, Ingwall J. S. ATP synthesis and degradation rates in the perfused rat heart. 31P-nuclear magnetic resonance double saturation transfer measurements. Biophys J. 1988 Nov;54(5):921–929. doi: 10.1016/S0006-3495(88)83028-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stepanov V., Mateo P., Gillet B., Beloeil J. C., Lechene P., Hoerter J. A. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart. Am J Physiol. 1997 Oct;273(4 Pt 1):C1397–C1408. doi: 10.1152/ajpcell.1997.273.4.C1397. [DOI] [PubMed] [Google Scholar]
  23. Uğurbil K., Petein M., Maidan R., Michurski S., From A. H. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction. Biochemistry. 1986 Jan 14;25(1):100–107. doi: 10.1021/bi00349a015. [DOI] [PubMed] [Google Scholar]
  24. Zahler R., Bittl J. A., Ingwall J. S. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer. Biophys J. 1987 Jun;51(6):883–893. doi: 10.1016/S0006-3495(87)83416-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zahler R., Ingwall J. S. Estimation of heart mitochondrial creatine kinase flux using magnetization transfer NMR spectroscopy. Am J Physiol. 1992 Apr;262(4 Pt 2):H1022–H1028. doi: 10.1152/ajpheart.1992.262.4.H1022. [DOI] [PubMed] [Google Scholar]
  26. Zeleznikar R. J., Goldberg N. D. Kinetics and compartmentation of energy metabolism in intact skeletal muscle determined from 18O labeling of metabolite phosphoryls. J Biol Chem. 1991 Aug 15;266(23):15110–15119. [PubMed] [Google Scholar]
  27. Zweier J. L., Jacobus W. E. Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart. J Biol Chem. 1987 Jun 15;262(17):8015–8021. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES