Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):137–143. doi: 10.1016/S0006-3495(00)76278-3

Single-particle tracking: Brownian dynamics of viscoelastic materials.

H Qian 1
PMCID: PMC1300920  PMID: 10866942

Abstract

A unifying theoretical framework for analyzing stochastic data from single-particle tracking (SPT) in viscoelastic materials is presented. A generalization of the bead-spring model for linear polymers is developed from a molecular point of view and from the standpoint of phenomenological linear viscoelasticity. The hydrodynamic interaction in the former is identified as the dashpots in the latter. In elementary terms, the intimate correspondence between time-correlation of the fluctuation measurements and transient relaxation kinetics after perturbation is discussed, and the central role of the fluctuation-dissipation relation is emphasized. The work presented here provides a bridge between the microscopic and the macroscopic views of linear viscoelastic biological materials, and is applicable to membrane protein diffusion, linear DNA chain dynamics, and mechanics of intracellular cytoskeletal networks.

Full Text

The Full Text of this article is available as a PDF (63.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amblard F, Maggs AC, Yurke B, Pargellis A, Leibler S. Subdiffusion and Anomalous Local Viscoelasticity in Actin Networks. Phys Rev Lett. 1996 Nov 18;77(21):4470–4473. doi: 10.1103/PhysRevLett.77.4470. [DOI] [PubMed] [Google Scholar]
  2. Elson E. L. Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem. 1988;17:397–430. doi: 10.1146/annurev.bb.17.060188.002145. [DOI] [PubMed] [Google Scholar]
  3. Fernandez J. M. Cellular and molecular mechanics by atomic force microscopy: capturing the exocytotic fusion pore in vivo? Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):9–10. doi: 10.1073/pnas.94.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Finzi L., Gelles J. Measurement of lactose repressor-mediated loop formation and breakdown in single DNA molecules. Science. 1995 Jan 20;267(5196):378–380. doi: 10.1126/science.7824935. [DOI] [PubMed] [Google Scholar]
  5. Geerts H., De Brabander M., Nuydens R., Geuens S., Moeremans M., De Mey J., Hollenbeck P. Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys J. 1987 Nov;52(5):775–782. doi: 10.1016/S0006-3495(87)83271-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  7. Klapper I., Qian H. Remarks on discrete and continuous large-scale models of DNA dynamics. Biophys J. 1998 May;74(5):2504–2514. doi: 10.1016/S0006-3495(98)77959-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kubo R. Brownian motion and nonequilibrium statistical mechanics. Science. 1986 Jul 18;233(4761):330–334. doi: 10.1126/science.233.4761.330. [DOI] [PubMed] [Google Scholar]
  9. Kusumi A., Sako Y. Cell surface organization by the membrane skeleton. Curr Opin Cell Biol. 1996 Aug;8(4):566–574. doi: 10.1016/s0955-0674(96)80036-6. [DOI] [PubMed] [Google Scholar]
  10. Mason TG, Weitz DA. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett. 1995 Feb 13;74(7):1250–1253. doi: 10.1103/PhysRevLett.74.1250. [DOI] [PubMed] [Google Scholar]
  11. Mizraji E., Acerenza L., Lin J. Viscoelastic models for enzymes with multiple conformational states. J Theor Biol. 1987 Nov 21;129(2):163–175. doi: 10.1016/s0022-5193(87)80010-3. [DOI] [PubMed] [Google Scholar]
  12. Qian H., Elson E. L., Frieden C. Studies on the structure of actin gels using time correlation spectroscopy of fluorescent beads. Biophys J. 1992 Oct;63(4):1000–1010. doi: 10.1016/S0006-3495(92)81686-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Qian H., Elson E. L. Quantitative study of polymer conformation and dynamics by single-particle tracking. Biophys J. 1999 Mar;76(3):1598–1605. doi: 10.1016/S0006-3495(99)77319-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Qian H., Sheetz M. P., Elson E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J. 1991 Oct;60(4):910–921. doi: 10.1016/S0006-3495(91)82125-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saxton M. J., Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. [DOI] [PubMed] [Google Scholar]
  16. Saxton M. J. Single-particle tracking: effects of corrals. Biophys J. 1995 Aug;69(2):389–398. doi: 10.1016/S0006-3495(95)79911-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shapiro B. E., Qian H. A quantitative analysis of single protein-ligand complex separation with the atomic force microscope. Biophys Chem. 1997 Sep 1;67(1-3):211–219. doi: 10.1016/s0301-4622(97)00045-8. [DOI] [PubMed] [Google Scholar]
  18. Shapiro B. E., Qian H. Hysteresis in force probe measurements: a dynamical systems perspective. J Theor Biol. 1998 Oct 21;194(4):551–559. doi: 10.1006/jtbi.1998.0774. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES