Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):144–152. doi: 10.1016/S0006-3495(00)76279-5

Cell movement is guided by the rigidity of the substrate.

C M Lo 1, H B Wang 1, M Dembo 1, Y L Wang 1
PMCID: PMC1300921  PMID: 10866943

Abstract

Directional cell locomotion is critical in many physiological processes, including morphogenesis, the immune response, and wound healing. It is well known that in these processes cell movements can be guided by gradients of various chemical signals. In this study, we demonstrate that cell movement can also be guided by purely physical interactions at the cell-substrate interface. We cultured National Institutes of Health 3T3 fibroblasts on flexible polyacrylamide sheets coated with type I collagen. A transition in rigidity was introduced in the central region of the sheet by a discontinuity in the concentration of the bis-acrylamide cross-linker. Cells approaching the transition region from the soft side could easily migrate across the boundary, with a concurrent increase in spreading area and traction forces. In contrast, cells migrating from the stiff side turned around or retracted as they reached the boundary. We call this apparent preference for a stiff substrate "durotaxis." In addition to substrate rigidity, we discovered that cell movement could also be guided by manipulating the flexible substrate to produce mechanical strains in the front or rear of a polarized cell. We conclude that changes in tissue rigidity and strain could play an important controlling role in a number of normal and pathological processes involving cell locomotion.

Full Text

The Full Text of this article is available as a PDF (476.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein L. R., Liotta L. A. Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Curr Opin Oncol. 1994 Jan;6(1):106–113. doi: 10.1097/00001622-199401000-00015. [DOI] [PubMed] [Google Scholar]
  2. Bray D. Axonal growth in response to experimentally applied mechanical tension. Dev Biol. 1984 Apr;102(2):379–389. doi: 10.1016/0012-1606(84)90202-1. [DOI] [PubMed] [Google Scholar]
  3. Brown M. J., Loew L. M. Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J Cell Biol. 1994 Oct;127(1):117–128. doi: 10.1083/jcb.127.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carter S. B. Haptotaxis and the mechanism of cell motility. Nature. 1967 Jan 21;213(5073):256–260. doi: 10.1038/213256a0. [DOI] [PubMed] [Google Scholar]
  5. Carter S. B. Principles of cell motility: the direction of cell movement and cancer invasion. Nature. 1965 Dec 18;208(5016):1183–1187. doi: 10.1038/2081183a0. [DOI] [PubMed] [Google Scholar]
  6. Chada S., Lamoureux P., Buxbaum R. E., Heidemann S. R. Cytomechanics of neurite outgrowth from chick brain neurons. J Cell Sci. 1997 May;110(Pt 10):1179–1186. doi: 10.1242/jcs.110.10.1179. [DOI] [PubMed] [Google Scholar]
  7. Choquet D., Felsenfeld D. P., Sheetz M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell. 1997 Jan 10;88(1):39–48. doi: 10.1016/s0092-8674(00)81856-5. [DOI] [PubMed] [Google Scholar]
  8. Curtis A., Wilkinson C. New depths in cell behaviour: reactions of cells to nanotopography. Biochem Soc Symp. 1999;65:15–26. [PubMed] [Google Scholar]
  9. Curtis A., Wilkinson C. Topographical control of cells. Biomaterials. 1997 Dec;18(24):1573–1583. doi: 10.1016/s0142-9612(97)00144-0. [DOI] [PubMed] [Google Scholar]
  10. DePasquale J. A., Izzard C. S. Evidence for an actin-containing cytoplasmic precursor of the focal contact and the timing of incorporation of vinculin at the focal contact. J Cell Biol. 1987 Dec;105(6 Pt 1):2803–2809. doi: 10.1083/jcb.105.6.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dembo M., Wang Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J. 1999 Apr;76(4):2307–2316. doi: 10.1016/S0006-3495(99)77386-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dunn G. A., Brown A. F. Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J Cell Sci. 1986 Jul;83:313–340. doi: 10.1242/jcs.83.1.313. [DOI] [PubMed] [Google Scholar]
  13. Erickson C. A., Nuccitelli R. Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J Cell Biol. 1984 Jan;98(1):296–307. doi: 10.1083/jcb.98.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Halliday N. L., Tomasek J. J. Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro. Exp Cell Res. 1995 Mar;217(1):109–117. doi: 10.1006/excr.1995.1069. [DOI] [PubMed] [Google Scholar]
  15. Harris A. K., Stopak D., Wild P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature. 1981 Mar 19;290(5803):249–251. doi: 10.1038/290249a0. [DOI] [PubMed] [Google Scholar]
  16. Harris A. Behavior of cultured cells on substrata of variable adhesiveness. Exp Cell Res. 1973 Mar 15;77(1):285–297. doi: 10.1016/0014-4827(73)90579-x. [DOI] [PubMed] [Google Scholar]
  17. Huttenlocher A., Ginsberg M. H., Horwitz A. F. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J Cell Biol. 1996 Sep;134(6):1551–1562. doi: 10.1083/jcb.134.6.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Juliano R. L., Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993 Feb;120(3):577–585. doi: 10.1083/jcb.120.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Keely P. J., Fong A. M., Zutter M. M., Santoro S. A. Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense alpha 2 integrin mRNA in mammary cells. J Cell Sci. 1995 Feb;108(Pt 2):595–607. doi: 10.1242/jcs.108.2.595. [DOI] [PubMed] [Google Scholar]
  20. Kolega J. Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol. 1986 Apr;102(4):1400–1411. doi: 10.1083/jcb.102.4.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lamoureux P., Buxbaum R. E., Heidemann S. R. Direct evidence that growth cones pull. Nature. 1989 Jul 13;340(6229):159–162. doi: 10.1038/340159a0. [DOI] [PubMed] [Google Scholar]
  22. Lauffenburger D. A., Horwitz A. F. Cell migration: a physically integrated molecular process. Cell. 1996 Feb 9;84(3):359–369. doi: 10.1016/s0092-8674(00)81280-5. [DOI] [PubMed] [Google Scholar]
  23. Lee J., Ishihara A., Oxford G., Johnson B., Jacobson K. Regulation of cell movement is mediated by stretch-activated calcium channels. Nature. 1999 Jul 22;400(6742):382–386. doi: 10.1038/22578. [DOI] [PubMed] [Google Scholar]
  24. Lowe B. The role of Ca2+ in deflection-induced excitation of motile, mechanoresponsive balancer cilia in the ctenophore statocyst. J Exp Biol. 1997 Jun;200(Pt 11):1593–1606. doi: 10.1242/jeb.200.11.1593. [DOI] [PubMed] [Google Scholar]
  25. Mandeville J. T., Lawson M. A., Maxfield F. R. Dynamic imaging of neutrophil migration in three dimensions: mechanical interactions between cells and matrix. J Leukoc Biol. 1997 Feb;61(2):188–200. doi: 10.1002/jlb.61.2.188. [DOI] [PubMed] [Google Scholar]
  26. Martin P. Wound healing--aiming for perfect skin regeneration. Science. 1997 Apr 4;276(5309):75–81. doi: 10.1126/science.276.5309.75. [DOI] [PubMed] [Google Scholar]
  27. Oakley C., Jaeger N. A., Brunette D. M. Sensitivity of fibroblasts and their cytoskeletons to substratum topographies: topographic guidance and topographic compensation by micromachined grooves of different dimensions. Exp Cell Res. 1997 Aug 1;234(2):413–424. doi: 10.1006/excr.1997.3625. [DOI] [PubMed] [Google Scholar]
  28. Pelham R. J., Jr, Wang Y. l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13661–13665. doi: 10.1073/pnas.94.25.13661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pelham R. J., Jr, Wang Y. l. High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell. 1999 Apr;10(4):935–945. doi: 10.1091/mbc.10.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pettit E. J., Fay F. S. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev. 1998 Oct;78(4):949–967. doi: 10.1152/physrev.1998.78.4.949. [DOI] [PubMed] [Google Scholar]
  31. Radmacher M., Tillamnn R. W., Fritz M., Gaub H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992 Sep 25;257(5078):1900–1905. doi: 10.1126/science.1411505. [DOI] [PubMed] [Google Scholar]
  32. Saranak J., Foster K. W. Rhodopsin guides fungal phototaxis. Nature. 1997 May 29;387(6632):465–466. doi: 10.1038/387465a0. [DOI] [PubMed] [Google Scholar]
  33. Schwarzbauer J. E., Sechler J. L. Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr Opin Cell Biol. 1999 Oct;11(5):622–627. doi: 10.1016/s0955-0674(99)00017-4. [DOI] [PubMed] [Google Scholar]
  34. Sheetz M. P., Felsenfeld D. P., Galbraith C. G. Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol. 1998 Feb;8(2):51–54. doi: 10.1016/s0962-8924(98)80005-6. [DOI] [PubMed] [Google Scholar]
  35. Toyoizumi R., Takeuchi S. The behavior of chick gastrula mesodermal cells under the unidirectional tractive force parallel to the substrata. J Cell Sci. 1995 Feb;108(Pt 2):557–567. doi: 10.1242/jcs.108.2.557. [DOI] [PubMed] [Google Scholar]
  36. Tranquillo R. T. Self-organization of tissue-equivalents: the nature and role of contact guidance. Biochem Soc Symp. 1999;65:27–42. [PubMed] [Google Scholar]
  37. Verkhovsky A. B., Svitkina T. M., Borisy G. G. Self-polarization and directional motility of cytoplasm. Curr Biol. 1999 Jan 14;9(1):11–20. doi: 10.1016/s0960-9822(99)80042-6. [DOI] [PubMed] [Google Scholar]
  38. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. doi: 10.1126/science.7684161. [DOI] [PubMed] [Google Scholar]
  39. Wang Y. L., Pelham R. J., Jr Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 1998;298:489–496. doi: 10.1016/s0076-6879(98)98041-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES