Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):184–190. doi: 10.1016/S0006-3495(00)76282-5

Size-dependent positioning of human chromosomes in interphase nuclei.

H B Sun 1, J Shen 1, H Yokota 1
PMCID: PMC1300924  PMID: 10866946

Abstract

By using a fluorescence in situ hybridization technique we revealed that for nine different q-arm telomere markers the positioning of chromosomes in human G(1) interphase nuclei was chromosome size-dependent. The q-arm telomeres of large chromosomes are more peripherally located than telomeres on small chromosomes. This highly organized arrangement of chromatin within the human nucleus was discovered by determining the x and y coordinates of the hybridization sites and calculating the root-mean-square radial distance to the nuclear centers in human fibroblasts. We demonstrate here that global organization within the G(1) interphase nucleus is affected by one of the most fundamental physical quantities-chromosome size or mass-and propose two biophysical models, a volume exclusion model and a mitotic preset model, to explain our finding.

Full Text

The Full Text of this article is available as a PDF (248.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abney J. R., Cutler B., Fillbach M. L., Axelrod D., Scalettar B. A. Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol. 1997 Jun 30;137(7):1459–1468. doi: 10.1083/jcb.137.7.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chandley A. C., Speed R. M., Leitch A. R. Different distributions of homologous chromosomes in adult human Sertoli cells and in lymphocytes signify nuclear differentiation. J Cell Sci. 1996 Apr;109(Pt 4):773–776. doi: 10.1242/jcs.109.4.773. [DOI] [PubMed] [Google Scholar]
  3. Cook P. R. A chromomeric model for nuclear and chromosome structure. J Cell Sci. 1995 Sep;108(Pt 9):2927–2935. doi: 10.1242/jcs.108.9.2927. [DOI] [PubMed] [Google Scholar]
  4. Cremer T., Kurz A., Zirbel R., Dietzel S., Rinke B., Schröck E., Speicher M. R., Mathieu U., Jauch A., Emmerich P. Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol. 1993;58:777–792. doi: 10.1101/sqb.1993.058.01.085. [DOI] [PubMed] [Google Scholar]
  5. Emmerich P., Loos P., Jauch A., Hopman A. H., Wiegant J., Higgins M. J., White B. N., van der Ploeg M., Cremer C., Cremer T. Double in situ hybridization in combination with digital image analysis: a new approach to study interphase chromosome topography. Exp Cell Res. 1989 Mar;181(1):126–140. doi: 10.1016/0014-4827(89)90188-2. [DOI] [PubMed] [Google Scholar]
  6. Fung J. C., Marshall W. F., Dernburg A., Agard D. A., Sedat J. W. Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J Cell Biol. 1998 Apr 6;141(1):5–20. doi: 10.1083/jcb.141.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerdes M. G., Carter K. C., Moen P. T., Jr, Lawrence J. B. Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos. J Cell Biol. 1994 Jul;126(2):289–304. doi: 10.1083/jcb.126.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haaf T., Schmid M. Chromosome topology in mammalian interphase nuclei. Exp Cell Res. 1991 Feb;192(2):325–332. doi: 10.1016/0014-4827(91)90048-y. [DOI] [PubMed] [Google Scholar]
  9. Hiraoka Y., Agard D. A., Sedat J. W. Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos. J Cell Biol. 1990 Dec;111(6 Pt 2):2815–2828. doi: 10.1083/jcb.111.6.2815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jakobsson A. H., Wettergren Y., Haaf T. Chromatin bodies in multidrug resistant hybrid cells have centromeres and originate from homogeneously staining regions. Anticancer Res. 1989 Mar-Apr;9(2):267–271. [PubMed] [Google Scholar]
  11. Kurz A., Lampel S., Nickolenko J. E., Bradl J., Benner A., Zirbel R. M., Cremer T., Lichter P. Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol. 1996 Dec;135(5):1195–1205. doi: 10.1083/jcb.135.5.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leitch A. R., Brown J. K., Mosgöller W., Schwarzacher T., Heslop-Harrison J. S. The spatial localization of homologous chromosomes in human fibroblasts at mitosis. Hum Genet. 1994 Mar;93(3):275–280. doi: 10.1007/BF00212022. [DOI] [PubMed] [Google Scholar]
  13. Levan A., Levan G. Have double minutes functioning centromeres? Hereditas. 1978;88(1):81–92. doi: 10.1111/j.1601-5223.1978.tb01606.x. [DOI] [PubMed] [Google Scholar]
  14. Lichter P., Cremer T., Borden J., Manuelidis L., Ward D. C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet. 1988 Nov;80(3):224–234. doi: 10.1007/BF01790090. [DOI] [PubMed] [Google Scholar]
  15. Manuelidis L. A view of interphase chromosomes. Science. 1990 Dec 14;250(4987):1533–1540. doi: 10.1126/science.2274784. [DOI] [PubMed] [Google Scholar]
  16. Marshall W. F., Straight A., Marko J. F., Swedlow J., Dernburg A., Belmont A., Murray A. W., Agard D. A., Sedat J. W. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol. 1997 Dec 1;7(12):930–939. doi: 10.1016/s0960-9822(06)00412-x. [DOI] [PubMed] [Google Scholar]
  17. Mirkovitch J., Mirault M. E., Laemmli U. K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell. 1984 Nov;39(1):223–232. doi: 10.1016/0092-8674(84)90208-3. [DOI] [PubMed] [Google Scholar]
  18. Morton N. E. Parameters of the human genome. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7474–7476. doi: 10.1073/pnas.88.17.7474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mosgöller W., Leitch A. R., Brown J. K., Heslop-Harrison J. S. Chromosome arrangements in human fibroblasts at mitosis. Hum Genet. 1991 Nov;88(1):27–33. doi: 10.1007/BF00204924. [DOI] [PubMed] [Google Scholar]
  20. Pinkel D., Landegent J., Collins C., Fuscoe J., Segraves R., Lucas J., Gray J. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9138–9142. doi: 10.1073/pnas.85.23.9138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Popp S., Scholl H. P., Loos P., Jauch A., Stelzer E., Cremer C., Cremer T. Distribution of chromosome 18 and X centric heterochromatin in the interphase nucleus of cultured human cells. Exp Cell Res. 1990 Jul;189(1):1–12. doi: 10.1016/0014-4827(90)90249-a. [DOI] [PubMed] [Google Scholar]
  22. Rappold G. A., Cremer T., Hager H. D., Davies K. E., Müller C. R., Yang T. Sex chromosome positions in human interphase nuclei as studied by in situ hybridization with chromosome specific DNA probes. Hum Genet. 1984;67(3):317–325. doi: 10.1007/BF00291361. [DOI] [PubMed] [Google Scholar]
  23. Riethman H. C., Moyzis R. K., Meyne J., Burke D. T., Olson M. V. Cloning human telomeric DNA fragments into Saccharomyces cerevisiae using a yeast-artificial-chromosome vector. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6240–6244. doi: 10.1073/pnas.86.16.6240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sachs R. K., van den Engh G., Trask B., Yokota H., Hearst J. E. A random-walk/giant-loop model for interphase chromosomes. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2710–2714. doi: 10.1073/pnas.92.7.2710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spector D. L. Nuclear organization and gene expression. Exp Cell Res. 1996 Dec 15;229(2):189–197. doi: 10.1006/excr.1996.0358. [DOI] [PubMed] [Google Scholar]
  26. Sun H. B., Yokota H. Correlated positioning of homologous chromosomes in daughter fibroblast cells. Chromosome Res. 1999;7(8):603–610. doi: 10.1023/a:1009279918034. [DOI] [PubMed] [Google Scholar]
  27. Wollenberg C., Kiefaber M. P., Zang K. D. Quantitative studies on the arrangement of human metaphase chromosomes. VIII. Localization of homologous chromosomes. Hum Genet. 1982;60(3):239–248. doi: 10.1007/BF00303011. [DOI] [PubMed] [Google Scholar]
  28. Yokota H., Singer M. J., van den Engh G. J., Trask B. J. Regional differences in the compaction of chromatin in human G0/G1 interphase nuclei. Chromosome Res. 1997 May;5(3):157–166. doi: 10.1023/a:1018438729203. [DOI] [PubMed] [Google Scholar]
  29. Yokota H., van den Engh G., Hearst J. E., Sachs R. K., Trask B. J. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol. 1995 Sep;130(6):1239–1249. doi: 10.1083/jcb.130.6.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES