Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):215–230. doi: 10.1016/S0006-3495(00)76285-0

Proton-sensitive transitions of renal type II Na(+)-coupled phosphate cotransporter kinetics.

I C Forster 1, J Biber 1, H Murer 1
PMCID: PMC1300927  PMID: 10866949

Abstract

In the kidney proximal tubule, acidification of the glomerular filtrate leads to an inhibition of inorganic phosphate (P(i)) reabsorption by type II Na(+)-coupled cotransporters (NaPi-II). As external pH also alters the divalent/monovalent P(i) ratio, it has been difficult to separate putative proton interactions with the cotransporter from direct titration of divalent P(i), the preferred species transported. To distinguish between these possibilities and identify pH-sensitive transitions in the cotransport cycle, the pH-dependent kinetics of two NaPi-II isoforms, expressed in Xenopus laevis oocytes, were investigated electrophysiologically. At -50 mV, both isoforms showed >70% suppression of electrogenic response for an external pH change from 8.0 to 6.2, not attributable to titration of divalent P(i). This was accompanied by a progressive removal of steady-state voltage dependence. The NaPi-II-related uncoupled slippage current was unaffected by a pH change from 7.4 to 6.2, with no shift in the reversal potential, which suggested that protons do not function as substrate. The voltage-dependence of pre-steady-state relaxations was shifted to depolarizing potentials in 100 mM and 0 mM Na(ext)(+) and two kinetic components were resolved, the slower of which was pH-dependent. The changes in kinetics are predicted by a model in which protons interact with the empty carrier and final Na(+) binding step.

Full Text

The Full Text of this article is available as a PDF (227.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amstutz M., Mohrmann M., Gmaj P., Murer H. Effect of pH on phosphate transport in rat renal brush border membrane vesicles. Am J Physiol. 1985 May;248(5 Pt 2):F705–F710. doi: 10.1152/ajprenal.1985.248.5.F705. [DOI] [PubMed] [Google Scholar]
  2. Bindels R. J., van den Broek L. A., van Os C. H. Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes. Biochim Biophys Acta. 1987 Feb 12;897(1):83–92. doi: 10.1016/0005-2736(87)90317-8. [DOI] [PubMed] [Google Scholar]
  3. Burckhardt G., Stern H., Murer H. The influence of pH on phosphate transport into rat renal brush border membrane vesicles. Pflugers Arch. 1981 May;390(2):191–197. doi: 10.1007/BF00590206. [DOI] [PubMed] [Google Scholar]
  4. Busch A., Waldegger S., Herzer T., Biber J., Markovich D., Hayes G., Murer H., Lang F. Electrophysiological analysis of Na+/Pi cotransport mediated by a transporter cloned from rat kidney and expressed in Xenopus oocytes. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8205–8208. doi: 10.1073/pnas.91.17.8205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen X. Z., Coady M. J., Lapointe J. Y. Fast voltage clamp discloses a new component of presteady-state currents from the Na(+)-glucose cotransporter. Biophys J. 1996 Nov;71(5):2544–2552. doi: 10.1016/S0006-3495(96)79447-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng L., Sacktor B. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. J Biol Chem. 1981 Feb 25;256(4):1556–1564. [PubMed] [Google Scholar]
  7. Choe H., Zhou H., Palmer L. G., Sackin H. A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. Am J Physiol. 1997 Oct;273(4 Pt 2):F516–F529. doi: 10.1152/ajprenal.1997.273.4.F516. [DOI] [PubMed] [Google Scholar]
  8. Forster I. C., Greeff N. G. The early phase of sodium channel gating current in the squid giant axon. Characteristics of a fast component of displacement charge movement. Eur Biophys J. 1992;21(2):99–116. doi: 10.1007/BF00185425. [DOI] [PubMed] [Google Scholar]
  9. Forster I. C., Loo D. D., Eskandari S. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am J Physiol. 1999 Apr;276(4 Pt 2):F644–F649. doi: 10.1152/ajprenal.1999.276.4.F644. [DOI] [PubMed] [Google Scholar]
  10. Forster I. C., Traebert M., Jankowski M., Stange G., Biber J., Murer H. Protein kinase C activators induce membrane retrieval of type II Na+-phosphate cotransporters expressed in Xenopus oocytes. J Physiol. 1999 Jun 1;517(Pt 2):327–340. doi: 10.1111/j.1469-7793.1999.0327t.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forster I. C., Wagner C. A., Busch A. E., Lang F., Biber J., Hernando N., Murer H., Werner A. Electrophysiological characterization of the flounder type II Na+/Pi cotransporter (NaPi-5) expressed in Xenopus laevis oocytes. J Membr Biol. 1997 Nov 1;160(1):9–25. doi: 10.1007/s002329900291. [DOI] [PubMed] [Google Scholar]
  12. Forster I., Hernando N., Biber J., Murer H. The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2). J Gen Physiol. 1998 Jul;112(1):1–18. doi: 10.1085/jgp.112.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GOTTSCHALK C. W., LASSITER W. E., MYLLE M. Localization of urine acidification in the mammalian kidney. Am J Physiol. 1960 Mar;198:581–585. doi: 10.1152/ajplegacy.1960.198.3.581. [DOI] [PubMed] [Google Scholar]
  14. Hager K., Hazama A., Kwon H. M., Loo D. D., Handler J. S., Wright E. M. Kinetics and specificity of the renal Na+/myo-inositol cotransporter expressed in Xenopus oocytes. J Membr Biol. 1995 Jan;143(2):103–113. doi: 10.1007/BF00234656. [DOI] [PubMed] [Google Scholar]
  15. Hartmann C. M., Wagner C. A., Busch A. E., Markovich D., Biber J., Lang F., Murer H. Transport characteristics of a murine renal Na/Pi-cotransporter. Pflugers Arch. 1995 Sep;430(5):830–836. doi: 10.1007/BF00386183. [DOI] [PubMed] [Google Scholar]
  16. Hilfiker H., Hattenhauer O., Traebert M., Forster I., Murer H., Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14564–14569. doi: 10.1073/pnas.95.24.14564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hirayama B. A., Loo D. D., Wright E. M. Cation effects on protein conformation and transport in the Na+/glucose cotransporter. J Biol Chem. 1997 Jan 24;272(4):2110–2115. doi: 10.1074/jbc.272.4.2110. [DOI] [PubMed] [Google Scholar]
  18. Hirayama B. A., Loo D. D., Wright E. M. Protons drive sugar transport through the Na+/glucose cotransporter (SGLT1). J Biol Chem. 1994 Aug 26;269(34):21407–21410. [PubMed] [Google Scholar]
  19. Loo D. D., Hazama A., Supplisson S., Turk E., Wright E. M. Relaxation kinetics of the Na+/glucose cotransporter. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5767–5771. doi: 10.1073/pnas.90.12.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Magagnin S., Werner A., Markovich D., Sorribas V., Stange G., Biber J., Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5979–5983. doi: 10.1073/pnas.90.13.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matskevitch J., Wagner C. A., Risler T., Kwon H. M., Handler J. S., Waldegger S., Busch A. E., Lang F. Effect of extracellular pH on the myo-inositol transporter SMIT expressed in Xenopus oocytes. Pflugers Arch. 1998 Nov;436(6):854–857. doi: 10.1007/s004240050714. [DOI] [PubMed] [Google Scholar]
  22. Murer H., Biber J. Molecular mechanisms of renal apical Na/phosphate cotransport. Annu Rev Physiol. 1996;58:607–618. doi: 10.1146/annurev.ph.58.030196.003135. [DOI] [PubMed] [Google Scholar]
  23. Parent L., Supplisson S., Loo D. D., Wright E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol. 1992 Jan;125(1):63–79. doi: 10.1007/BF00235798. [DOI] [PubMed] [Google Scholar]
  24. Quamme G. A., Wong N. L. Phosphate transport in the proximal convoluted tubule: effect of intraluminal pH. Am J Physiol. 1984 Mar;246(3 Pt 2):F323–F333. doi: 10.1152/ajprenal.1984.246.3.F323. [DOI] [PubMed] [Google Scholar]
  25. Sacktor B., Cheng L. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. Effect of an intravesicular greater than extravesicular proton gradient. J Biol Chem. 1981 Aug 10;256(15):8080–8084. [PubMed] [Google Scholar]
  26. Samarzija I., Molnar V., Frömter E. pH--dependence of phosphate absorption in rat renal proximal tubule. Proc Eur Dial Transplant Assoc. 1983;19:779–783. [PubMed] [Google Scholar]
  27. Strévey J., Giroux S., Béliveau R. pH gradient as an additional driving force in the renal re-absorption of phosphate. Biochem J. 1990 Nov 1;271(3):687–692. doi: 10.1042/bj2710687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Umbach J. A., Coady M. J., Wright E. M. Intestinal Na+/glucose cotransporter expressed in Xenopus oocytes is electrogenic. Biophys J. 1990 Jun;57(6):1217–1224. doi: 10.1016/S0006-3495(90)82640-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wadiche J. I., Arriza J. L., Amara S. G., Kavanaugh M. P. Kinetics of a human glutamate transporter. Neuron. 1995 May;14(5):1019–1027. doi: 10.1016/0896-6273(95)90340-2. [DOI] [PubMed] [Google Scholar]
  30. Werner A., Murer H., Kinne R. K. Cloning and expression of a renal Na-Pi cotransport system from flounder. Am J Physiol. 1994 Aug;267(2 Pt 2):F311–F317. doi: 10.1152/ajprenal.1994.267.2.F311. [DOI] [PubMed] [Google Scholar]
  31. Woodward R. M., Miledi R. Sensitivity of Xenopus oocytes to changes in extracellular pH: possible relevance to proposed expression of atypical mammalian GABAB receptors. Brain Res Mol Brain Res. 1992 Dec;16(3-4):204–210. doi: 10.1016/0169-328x(92)90226-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES