Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):231–246. doi: 10.1016/S0006-3495(00)76286-2

Differential effects of amino-terminal distal and proximal domains in the regulation of human erg K(+) channel gating.

C G Viloria 1, F Barros 1, T Giráldez 1, D Gómez-Varela 1, P de la Peña 1
PMCID: PMC1300928  PMID: 10866950

Abstract

The participation of amino-terminal domains in human ether-a-go-go (eag)-related gene (HERG) K(+) channel gating was studied using deleted channel variants expressed in Xenopus oocytes. Selective deletion of the HERG-specific sequence (HERG Delta138-373) located between the conserved initial amino terminus (the eag or PAS domain) and the first transmembrane helix accelerates channel activation and shifts its voltage dependence to hyperpolarized values. However, deactivation time constants from fully activated states and channel inactivation remain almost unaltered after the deletion. The deletion effects are equally manifested in channel variants lacking inactivation. The characteristics of constructs lacking only about half of the HERG-specific domain (Delta223-373) or a short stretch of 19 residues (Delta355-373) suggest that the role of this domain is not related exclusively to its length, but also to the presence of specific sequences near the channel core. Deletion-induced effects are partially reversed by the additional elimination of the eag domain. Thus the particular combination of HERG-specific and eag domains determines two important HERG features: the slow activation essential for neuronal spike-frequency adaptation and maintenance of the cardiac action potential plateau, and the slow deactivation contributing to HERG inward rectification.

Full Text

The Full Text of this article is available as a PDF (225.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcangeli A., Becchetti A., Mannini A., Mugnai G., De Filippi P., Tarone G., Del Bene M. R., Barletta E., Wanke E., Olivotto M. Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol. 1993 Sep;122(5):1131–1143. doi: 10.1083/jcb.122.5.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arcangeli A., Bianchi L., Becchetti A., Faravelli L., Coronnello M., Mini E., Olivotto M., Wanke E. A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol. 1995 Dec 1;489(Pt 2):455–471. doi: 10.1113/jphysiol.1995.sp021065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barros F., Gomez-Varela D., Viloria C. G., Palomero T., Giráldez T., de la Peña P. Modulation of human erg K+ channel gating by activation of a G protein-coupled receptor and protein kinase C. J Physiol. 1998 Sep 1;511(Pt 2):333–346. doi: 10.1111/j.1469-7793.1998.333bh.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barros F., Villalobos C., García-Sancho J., del Camino D., de la Peña P. The role of the inwardly rectifying K+ current in resting potential and thyrotropin-releasing-hormone-induced changes in cell excitability of GH3 rat anterior pituitary cells. Pflugers Arch. 1994 Feb;426(3-4):221–230. doi: 10.1007/BF00374775. [DOI] [PubMed] [Google Scholar]
  5. Barros F., del Camino D., Pardo L. A., Palomero T., Giráldez T., de la Peña P. Demonstration of an inwardly rectifying K+ current component modulated by thyrotropin-releasing hormone and caffeine in GH3 rat anterior pituitary cells. Pflugers Arch. 1997 Dec;435(1):119–129. doi: 10.1007/s004240050491. [DOI] [PubMed] [Google Scholar]
  6. Bianchi L., Wible B., Arcangeli A., Taglialatela M., Morra F., Castaldo P., Crociani O., Rosati B., Faravelli L., Olivotto M. herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res. 1998 Feb 15;58(4):815–822. [PubMed] [Google Scholar]
  7. Bixby K. A., Nanao M. H., Shen N. V., Kreusch A., Bellamy H., Pfaffinger P. J., Choe S. Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nat Struct Biol. 1999 Jan;6(1):38–43. doi: 10.1038/4911. [DOI] [PubMed] [Google Scholar]
  8. Chiara M. D., Monje F., Castellano A., López-Barneo J. A small domain in the N terminus of the regulatory alpha-subunit Kv2. 3 modulates Kv2.1 potassium channel gating. J Neurosci. 1999 Aug 15;19(16):6865–6873. doi: 10.1523/JNEUROSCI.19-16-06865.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chiesa N., Rosati B., Arcangeli A., Olivotto M., Wanke E. A novel role for HERG K+ channels: spike-frequency adaptation. J Physiol. 1997 Jun 1;501(Pt 2):313–318. doi: 10.1111/j.1469-7793.1997.313bn.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chouabe C., Drici M. D., Romey G., Barhanin J., Lazdunski M. HERG and KvLQT1/IsK, the cardiac K+ channels involved in long QT syndromes, are targets for calcium channel blockers. Mol Pharmacol. 1998 Oct;54(4):695–703. [PubMed] [Google Scholar]
  11. Curran M. E., Splawski I., Timothy K. W., Vincent G. M., Green E. D., Keating M. T. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995 Mar 10;80(5):795–803. doi: 10.1016/0092-8674(95)90358-5. [DOI] [PubMed] [Google Scholar]
  12. Demo S. D., Yellen G. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron. 1991 Nov;7(5):743–753. doi: 10.1016/0896-6273(91)90277-7. [DOI] [PubMed] [Google Scholar]
  13. Faravelli L., Arcangeli A., Olivotto M., Wanke E. A HERG-like K+ channel in rat F-11 DRG cell line: pharmacological identification and biophysical characterization. J Physiol. 1996 Oct 1;496(Pt 1):13–23. doi: 10.1113/jphysiol.1996.sp021661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ficker E., Jarolimek W., Kiehn J., Baumann A., Brown A. M. Molecular determinants of dofetilide block of HERG K+ channels. Circ Res. 1998 Feb 23;82(3):386–395. doi: 10.1161/01.res.82.3.386. [DOI] [PubMed] [Google Scholar]
  15. Hancox J. C., Levi A. J., Witchel H. J. Time course and voltage dependence of expressed HERG current compared with native "rapid" delayed rectifier K current during the cardiac ventricular action potential. Pflugers Arch. 1998 Nov;436(6):843–853. doi: 10.1007/s004240050713. [DOI] [PubMed] [Google Scholar]
  16. Herzberg I. M., Trudeau M. C., Robertson G. A. Transfer of rapid inactivation and sensitivity to the class III antiarrhythmic drug E-4031 from HERG to M-eag channels. J Physiol. 1998 Aug 15;511(Pt 1):3–14. doi: 10.1111/j.1469-7793.1998.003bi.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  18. Holmgren M., Jurman M. E., Yellen G. N-type inactivation and the S4-S5 region of the Shaker K+ channel. J Gen Physiol. 1996 Sep;108(3):195–206. doi: 10.1085/jgp.108.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
  20. Kiehn J., Lacerda A. E., Brown A. M. Pathways of HERG inactivation. Am J Physiol. 1999 Jul;277(1 Pt 2):H199–H210. doi: 10.1152/ajpheart.1999.277.1.H199. [DOI] [PubMed] [Google Scholar]
  21. Kreusch A., Pfaffinger P. J., Stevens C. F., Choe S. Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature. 1998 Apr 30;392(6679):945–948. doi: 10.1038/31978. [DOI] [PubMed] [Google Scholar]
  22. London B., Trudeau M. C., Newton K. P., Beyer A. K., Copeland N. G., Gilbert D. J., Jenkins N. A., Satler C. A., Robertson G. A. Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. Circ Res. 1997 Nov;81(5):870–878. doi: 10.1161/01.res.81.5.870. [DOI] [PubMed] [Google Scholar]
  23. Marten I., Hoshi T. The N-terminus of the K channel KAT1 controls its voltage-dependent gating by altering the membrane electric field. Biophys J. 1998 Jun;74(6):2953–2962. doi: 10.1016/S0006-3495(98)78002-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marten I., Hoshi T. Voltage-dependent gating characteristics of the K+ channel KAT1 depend on the N and C termini. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3448–3453. doi: 10.1073/pnas.94.7.3448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morais Cabral J. H., Lee A., Cohen S. L., Chait B. T., Li M., Mackinnon R. Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell. 1998 Nov 25;95(5):649–655. doi: 10.1016/s0092-8674(00)81635-9. [DOI] [PubMed] [Google Scholar]
  26. Pascual J. M., Shieh C. C., Kirsch G. E., Brown A. M. Contribution of the NH2 terminus of Kv2.1 to channel activation. Am J Physiol. 1997 Dec;273(6 Pt 1):C1849–C1858. doi: 10.1152/ajpcell.1997.273.6.C1849. [DOI] [PubMed] [Google Scholar]
  27. Rosati B., Rocchetti M., Zaza A., Wanke E. Sulfonylureas blockade of neural and cardiac HERG channels. FEBS Lett. 1998 Nov 27;440(1-2):125–130. doi: 10.1016/s0014-5793(98)01444-6. [DOI] [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sanguinetti M. C., Jiang C., Curran M. E., Keating M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell. 1995 Apr 21;81(2):299–307. doi: 10.1016/0092-8674(95)90340-2. [DOI] [PubMed] [Google Scholar]
  30. Sanguinetti M. C., Xu Q. P. Mutations of the S4-S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes. J Physiol. 1999 Feb 1;514(Pt 3):667–675. doi: 10.1111/j.1469-7793.1999.667ad.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schäfer R., Wulfsen I., Behrens S., Weinsberg F., Bauer C. K., Schwarz J. R. The erg-like potassium current in rat lactotrophs. J Physiol. 1999 Jul 15;518(Pt 2):401–416. doi: 10.1111/j.1469-7793.1999.0401p.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schönherr R., Heinemann S. H. Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J Physiol. 1996 Jun 15;493(Pt 3):635–642. doi: 10.1113/jphysiol.1996.sp021410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schönherr R., Rosati B., Hehl S., Rao V. G., Arcangeli A., Olivotto M., Heinemann S. H., Wanke E. Functional role of the slow activation property of ERG K+ channels. Eur J Neurosci. 1999 Mar;11(3):753–760. doi: 10.1046/j.1460-9568.1999.00493.x. [DOI] [PubMed] [Google Scholar]
  34. Smith P. L., Baukrowitz T., Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature. 1996 Feb 29;379(6568):833–836. doi: 10.1038/379833a0. [DOI] [PubMed] [Google Scholar]
  35. Spector P. S., Curran M. E., Keating M. T., Sanguinetti M. C. Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Open-channel block by methanesulfonanilides. Circ Res. 1996 Mar;78(3):499–503. doi: 10.1161/01.res.78.3.499. [DOI] [PubMed] [Google Scholar]
  36. Spector P. S., Curran M. E., Zou A., Keating M. T., Sanguinetti M. C. Fast inactivation causes rectification of the IKr channel. J Gen Physiol. 1996 May;107(5):611–619. doi: 10.1085/jgp.107.5.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Suessbrich H., Schönherr R., Heinemann S. H., Attali B., Lang F., Busch A. E. The inhibitory effect of the antipsychotic drug haloperidol on HERG potassium channels expressed in Xenopus oocytes. Br J Pharmacol. 1997 Mar;120(5):968–974. doi: 10.1038/sj.bjp.0700989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Suessbrich H., Schönherr R., Heinemann S. H., Lang F., Busch A. E. Specific block of cloned Herg channels by clofilium and its tertiary analog LY97241. FEBS Lett. 1997 Sep 8;414(2):435–438. doi: 10.1016/s0014-5793(97)01030-2. [DOI] [PubMed] [Google Scholar]
  39. Suessbrich H., Waldegger S., Lang F., Busch A. E. Blockade of HERG channels expressed in Xenopus oocytes by the histamine receptor antagonists terfenadine and astemizole. FEBS Lett. 1996 Apr 29;385(1-2):77–80. doi: 10.1016/0014-5793(96)00355-9. [DOI] [PubMed] [Google Scholar]
  40. Taglialatela M., Pannaccione A., Castaldo P., Giorgio G., Zhou Z., January C. T., Genovese A., Marone G., Annunziato L. Molecular basis for the lack of HERG K+ channel block-related cardiotoxicity by the H1 receptor blocker cetirizine compared with other second-generation antihistamines. Mol Pharmacol. 1998 Jul;54(1):113–121. doi: 10.1124/mol.54.1.113. [DOI] [PubMed] [Google Scholar]
  41. Terlau H., Heinemann S. H., Stühmer W., Pongs O., Ludwig J. Amino terminal-dependent gating of the potassium channel rat eag is compensated by a mutation in the S4 segment. J Physiol. 1997 Aug 1;502(Pt 3):537–543. doi: 10.1111/j.1469-7793.1997.537bj.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Titus S. A., Warmke J. W., Ganetzky B. The Drosophila erg K+ channel polypeptide is encoded by the seizure locus. J Neurosci. 1997 Feb 1;17(3):875–881. doi: 10.1523/JNEUROSCI.17-03-00875.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Trudeau M. C., Warmke J. W., Ganetzky B., Robertson G. A. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science. 1995 Jul 7;269(5220):92–95. doi: 10.1126/science.7604285. [DOI] [PubMed] [Google Scholar]
  44. Wang J., Trudeau M. C., Zappia A. M., Robertson G. A. Regulation of deactivation by an amino terminal domain in human ether-à-go-go-related gene potassium channels. J Gen Physiol. 1998 Nov;112(5):637–647. doi: 10.1085/jgp.112.5.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wang S., Liu S., Morales M. J., Strauss H. C., Rasmusson R. L. A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes. J Physiol. 1997 Jul 1;502(Pt 1):45–60. doi: 10.1111/j.1469-7793.1997.045bl.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wang X. J., Reynolds E. R., Déak P., Hall L. M. The seizure locus encodes the Drosophila homolog of the HERG potassium channel. J Neurosci. 1997 Feb 1;17(3):882–890. doi: 10.1523/JNEUROSCI.17-03-00882.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Warmke J. W., Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3438–3442. doi: 10.1073/pnas.91.8.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhou Z., Gong Q., Ye B., Fan Z., Makielski J. C., Robertson G. A., January C. T. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J. 1998 Jan;74(1):230–241. doi: 10.1016/S0006-3495(98)77782-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. de la Peña P., Delgado L. M., del Camino D., Barros F. Cloning and expression of the thyrotropin-releasing hormone receptor from GH3 rat anterior pituitary cells. Biochem J. 1992 Jun 15;284(Pt 3):891–899. doi: 10.1042/bj2840891. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES