Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):279–286. doi: 10.1016/S0006-3495(00)76290-4

Sulfhydryl oxidation overrides Mg(2+) inhibition of calcium-induced calcium release in skeletal muscle triads.

P Donoso 1, P Aracena 1, C Hidalgo 1
PMCID: PMC1300932  PMID: 10866954

Abstract

We studied the effect of oxidation of sulfhydryl (SH) residues on the inhibition by Mg(2+) of calcium-induced calcium release (CICR) in triad-enriched sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. Vesicles were either passively or actively loaded with calcium before eliciting CICR by dilution at pCa 4.6-4.4 in the presence of 1.2 mM free [ATP] and variable free [Mg(2+)]. Native triads exhibited a significant inhibition of CICR by Mg(2+), with a K(0.5) approximately 50 microM. Partial oxidation of vesicles with thimerosal produced a significant increase of release rate constants and initial release rates at all [Mg(2+)] tested (up to 1 mM), and shifted the K(0.5) value for Mg(2+) inhibition to 101 or 137 microM in triads actively or passively loaded with calcium, respectively. Further oxidation of vesicles with thimerosal completely suppressed the inhibitory effect of [Mg(2+)] on CICR, yielding initial rates of CICR of 2 micromol/(mg x s) in the presence of 1 mM free [Mg(2+)]. These effects of oxidation on CICR were fully reversed by SH reducing agents. We propose that oxidation of calcium release channels, by decreasing markedly the affinity of the channel inhibitory site for Mg(2+), makes CICR possible in skeletal muscle.

Full Text

The Full Text of this article is available as a PDF (111.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson J. J., Zable A. C., Favero T. G., Salama G. Thimerosal interacts with the Ca2+ release channel ryanodine receptor from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1995 Dec 15;270(50):29644–29647. doi: 10.1074/jbc.270.50.29644. [DOI] [PubMed] [Google Scholar]
  2. Aghdasi B., Zhang J. Z., Wu Y., Reid M. B., Hamilton S. L. Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel. J Biol Chem. 1997 Feb 7;272(6):3739–3748. doi: 10.1074/jbc.272.6.3739. [DOI] [PubMed] [Google Scholar]
  3. Carrier L., Villaz M., Dupont Y. Abnormal rapid Ca2+ release from sarcoplasmic reticulum of malignant hyperthermia susceptible pigs. Biochim Biophys Acta. 1991 May 7;1064(2):175–183. doi: 10.1016/0005-2736(91)90299-n. [DOI] [PubMed] [Google Scholar]
  4. Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
  5. Donoso P., Hidalgo C. pH-sensitive calcium release in triads from frog skeletal muscle. Rapid filtration studies. J Biol Chem. 1993 Dec 5;268(34):25432–25438. [PubMed] [Google Scholar]
  6. Donoso P., Prieto H., Hidalgo C. Luminal calcium regulates calcium release in triads isolated from frog and rabbit skeletal muscle. Biophys J. 1995 Feb;68(2):507–515. doi: 10.1016/S0006-3495(95)80212-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donoso P., Rodríguez P., Marambio P. Rapid kinetic studies of SH oxidation-induced calcium release from sarcoplasmic reticulum vesicles. Arch Biochem Biophys. 1997 May 15;341(2):295–299. doi: 10.1006/abbi.1997.9960. [DOI] [PubMed] [Google Scholar]
  8. Eager K. R., Dulhunty A. F. Activation of the cardiac ryanodine receptor by sulfhydryl oxidation is modified by Mg2+ and ATP. J Membr Biol. 1998 May 1;163(1):9–18. doi: 10.1007/s002329900365. [DOI] [PubMed] [Google Scholar]
  9. Eager K. R., Roden L. D., Dulhunty A. F. Actions of sulfhydryl reagents on single ryanodine receptor Ca(2+)-release channels from sheep myocardium. Am J Physiol. 1997 Jun;272(6 Pt 1):C1908–C1918. doi: 10.1152/ajpcell.1997.272.6.C1908. [DOI] [PubMed] [Google Scholar]
  10. Favero T. G., Zable A. C., Abramson J. J. Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1995 Oct 27;270(43):25557–25563. doi: 10.1074/jbc.270.43.25557. [DOI] [PubMed] [Google Scholar]
  11. Franzini-Armstrong C., Kish J. W. Alternate disposition of tetrads in peripheral couplings of skeletal muscle. J Muscle Res Cell Motil. 1995 Jun;16(3):319–324. doi: 10.1007/BF00121140. [DOI] [PubMed] [Google Scholar]
  12. Franzini-Armstrong C., Protasi F. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev. 1997 Jul;77(3):699–729. doi: 10.1152/physrev.1997.77.3.699. [DOI] [PubMed] [Google Scholar]
  13. Hain J., Nath S., Mayrleitner M., Fleischer S., Schindler H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from skeletal muscle. Biophys J. 1994 Nov;67(5):1823–1833. doi: 10.1016/S0006-3495(94)80664-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  15. Konishi M. Cytoplasmic free concentrations of Ca2+ and Mg2+ in skeletal muscle fibers at rest and during contraction. Jpn J Physiol. 1998 Dec;48(6):421–438. doi: 10.2170/jjphysiol.48.421. [DOI] [PubMed] [Google Scholar]
  16. Lamb G. D., Stephenson D. G. Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad. J Physiol. 1991 Mar;434:507–528. doi: 10.1113/jphysiol.1991.sp018483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lamb G. D., Stephenson D. G. Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol. 1994 Jul 15;478(Pt 2):331–339. doi: 10.1113/jphysiol.1994.sp020253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laver D. R., Baynes T. M., Dulhunty A. F. Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Membr Biol. 1997 Apr 1;156(3):213–229. doi: 10.1007/s002329900202. [DOI] [PubMed] [Google Scholar]
  19. Laver D. R., Owen V. J., Junankar P. R., Taske N. L., Dulhunty A. F., Lamb G. D. Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia. Biophys J. 1997 Oct;73(4):1913–1924. doi: 10.1016/S0006-3495(97)78222-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu G., Abramson J. J., Zable A. C., Pessah I. N. Direct evidence for the existence and functional role of hyperreactive sulfhydryls on the ryanodine receptor-triadin complex selectively labeled by the coumarin maleimide 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin. Mol Pharmacol. 1994 Feb;45(2):189–200. [PubMed] [Google Scholar]
  21. Liu G., Pessah I. N. Molecular interaction between ryanodine receptor and glycoprotein triadin involves redox cycling of functionally important hyperreactive sulfhydryls. J Biol Chem. 1994 Dec 30;269(52):33028–33034. [PubMed] [Google Scholar]
  22. Marengo J. J., Hidalgo C., Bull R. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. Biophys J. 1998 Mar;74(3):1263–1277. doi: 10.1016/S0006-3495(98)77840-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meissner G., Darling E., Eveleth J. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry. 1986 Jan 14;25(1):236–244. doi: 10.1021/bi00349a033. [DOI] [PubMed] [Google Scholar]
  24. Meissner G., Rios E., Tripathy A., Pasek D. A. Regulation of skeletal muscle Ca2+ release channel (ryanodine receptor) by Ca2+ and monovalent cations and anions. J Biol Chem. 1997 Jan 17;272(3):1628–1638. doi: 10.1074/jbc.272.3.1628. [DOI] [PubMed] [Google Scholar]
  25. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  26. Moutin M. J., Dupont Y. Rapid filtration studies of Ca2+-induced Ca2+ release from skeletal sarcoplasmic reticulum. Role of monovalent ions. J Biol Chem. 1988 Mar 25;263(9):4228–4235. [PubMed] [Google Scholar]
  27. O'Brien P. J. Porcine malignant hyperthermia susceptibility: hypersensitive calcium-release mechanism of skeletal muscle sarcoplasmic reticulum. Can J Vet Res. 1986 Jul;50(3):318–328. [PMC free article] [PubMed] [Google Scholar]
  28. Porter Moore C., Zhang J. Z., Hamilton S. L. A role for cysteine 3635 of RYR1 in redox modulation and calmodulin binding. J Biol Chem. 1999 Dec 24;274(52):36831–36834. doi: 10.1074/jbc.274.52.36831. [DOI] [PubMed] [Google Scholar]
  29. Prabhu S. D., Salama G. Reactive disulfide compounds induce Ca2+ release from cardiac sarcoplasmic reticulum. Arch Biochem Biophys. 1990 Nov 1;282(2):275–283. doi: 10.1016/0003-9861(90)90117-h. [DOI] [PubMed] [Google Scholar]
  30. Ríos E., Pizarro G. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev. 1991 Jul;71(3):849–908. doi: 10.1152/physrev.1991.71.3.849. [DOI] [PubMed] [Google Scholar]
  31. Ríos E., Stern M. D. Calcium in close quarters: microdomain feedback in excitation-contraction coupling and other cell biological phenomena. Annu Rev Biophys Biomol Struct. 1997;26:47–82. doi: 10.1146/annurev.biophys.26.1.47. [DOI] [PubMed] [Google Scholar]
  32. Salama G., Abramson J. J., Pike G. K. Sulphydryl reagents trigger Ca2+ release from the sarcoplasmic reticulum of skinned rabbit psoas fibres. J Physiol. 1992 Aug;454:389–420. doi: 10.1113/jphysiol.1992.sp019270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shirokova N., García J., Ríos E. Local calcium release in mammalian skeletal muscle. J Physiol. 1998 Oct 15;512(Pt 2):377–384. doi: 10.1111/j.1469-7793.1998.377be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Suko J., Hellmann G. Modification of sulfhydryls of the skeletal muscle calcium release channel by organic mercurial compounds alters Ca2+ affinity of regulatory Ca2+ sites in single channel recordings and [3H]ryanodine binding. Biochim Biophys Acta. 1998 Sep 16;1404(3):435–450. doi: 10.1016/s0167-4889(98)00075-5. [DOI] [PubMed] [Google Scholar]
  35. Trimm J. L., Salama G., Abramson J. J. Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles. J Biol Chem. 1986 Dec 5;261(34):16092–16098. [PubMed] [Google Scholar]
  36. Wu Y., Aghdasi B., Dou S. J., Zhang J. Z., Liu S. Q., Hamilton S. L. Functional interactions between cytoplasmic domains of the skeletal muscle Ca2+ release channel. J Biol Chem. 1997 Oct 3;272(40):25051–25061. doi: 10.1074/jbc.272.40.25051. [DOI] [PubMed] [Google Scholar]
  37. Zaidi N. F., Lagenaur C. F., Abramson J. J., Pessah I., Salama G. Reactive disulfides trigger Ca2+ release from sarcoplasmic reticulum via an oxidation reaction. J Biol Chem. 1989 Dec 25;264(36):21725–21736. [PubMed] [Google Scholar]
  38. Zhang J. Z., Wu Y., Williams B. Y., Rodney G., Mandel F., Strasburg G. M., Hamilton S. L. Oxidation of the skeletal muscle Ca2+ release channel alters calmodulin binding. Am J Physiol. 1999 Jan;276(1 Pt 1):C46–C53. doi: 10.1152/ajpcell.1999.276.1.c46. [DOI] [PubMed] [Google Scholar]
  39. Zucchi R., Ronca-Testoni S. The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev. 1997 Mar;49(1):1–51. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES