Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):321–327. doi: 10.1016/S0006-3495(00)76294-1

Water permeability and mechanical strength of polyunsaturated lipid bilayers.

K Olbrich 1, W Rawicz 1, D Needham 1, E Evans 1
PMCID: PMC1300936  PMID: 10866958

Abstract

Micropipette aspiration was used to test mechanical strength and water permeability of giant-fluid bilayer vesicles composed of polyunsaturated phosphatidylcholine PC lipids. Eight synthetic-diacyl PCs were chosen with 18 carbon chains and degrees of unsaturation that ranged from one double bond (C18:0/1, C18:1/0) to six double bonds per PC molecule (diC18:3). Produced by increasing pipette pressurization, membrane tensions for lysis of single vesicles at 21 degrees C ranged from approximately 9 to 10 mN/m for mono- and dimono-unsaturated PCs (18:0/1, 18:1/0, and diC18:1) but dropped abruptly to approximately 5 mN/m when one or both PC chains contained two cis-double bonds (C18:0/2 and diC18:2) and even lower approximately 3 mN/m for diC18:3. Driven by osmotic filtration following transfer of individual vesicles to a hypertonic environment, the apparent coefficient for water permeability at 21 degrees C varied modestly in a range from approximately 30 to 40 microm/s for mono- and dimono-unsaturated PCs. However, with two or more cis-double bonds in a chain, the apparent permeability rose to approximately 50 microm/s for C18:0/2, then strikingly to approximately 90 microm/s for diC18:2 and approximately 150 microm/s for diC18:3. The measurements of water permeability were found to scale exponentially with the reduced temperatures reported for these lipids in the literature. The correlation supports the concept that increase in free volume acquired in thermal expansion above the main gel-liquid crystal transition of a bilayer is a major factor in water transport. Taken together, the prominent changes in lysis tension and water permeability indicate that major changes occur in chain packing and cohesive interactions when two or more cis-double bonds alternate with saturated bonds along a chain.

Full Text

The Full Text of this article is available as a PDF (156.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton P. G., Gunstone F. D. Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins. Synthesis and properties of sixteen positional isomers of 1,2-dioctadecenoyl-sn-glycero-3-phosphorylcholine. J Biol Chem. 1975 Jun 25;250(12):4470–4476. [PubMed] [Google Scholar]
  2. Fettiplace R., Haydon D. A. Water permeability of lipid membranes. Physiol Rev. 1980 Apr;60(2):510–550. doi: 10.1152/physrev.1980.60.2.510. [DOI] [PubMed] [Google Scholar]
  3. Goldstein B., Dembo M. Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics. Biophys J. 1995 Apr;68(4):1222–1230. doi: 10.1016/S0006-3495(95)80298-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hallett F. R., Marsh J., Nickel B. G., Wood J. M. Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):435–442. doi: 10.1016/S0006-3495(93)81384-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huster D., Jin A. J., Arnold K., Gawrisch K. Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophys J. 1997 Aug;73(2):855–864. doi: 10.1016/S0006-3495(97)78118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jansen M., Blume A. A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. Biophys J. 1995 Mar;68(3):997–1008. doi: 10.1016/S0006-3495(95)80275-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Keough K. M., Kariel N. Differential scanning calorimetric studies of aqueous dispersions of phosphatidylcholines containing two polyenoic chains. Biochim Biophys Acta. 1987 Aug 7;902(1):11–18. doi: 10.1016/0005-2736(87)90130-1. [DOI] [PubMed] [Google Scholar]
  8. Keough K. M., Parsons C. S. Differential scanning calorimetry of dispersions of products of oxidation of 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine. Biochem Cell Biol. 1990 Jan;68(1):300–307. doi: 10.1139/o90-041. [DOI] [PubMed] [Google Scholar]
  9. Kim R. S., LaBella F. S. Comparison of analytical methods for monitoring autoxidation profiles of authentic lipids. J Lipid Res. 1987 Sep;28(9):1110–1117. [PubMed] [Google Scholar]
  10. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesicles. Biophys J. 1981 Sep;35(3):637–652. doi: 10.1016/S0006-3495(81)84817-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mui B. L., Cullis P. R., Evans E. A., Madden T. D. Osmotic properties of large unilamellar vesicles prepared by extrusion. Biophys J. 1993 Feb;64(2):443–453. doi: 10.1016/S0006-3495(93)81385-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Needham D., McIntosh T. J., Evans E. Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry. 1988 Jun 28;27(13):4668–4673. doi: 10.1021/bi00413a013. [DOI] [PubMed] [Google Scholar]
  14. Paula S., Volkov A. G., Van Hoek A. N., Haines T. H., Deamer D. W. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J. 1996 Jan;70(1):339–348. doi: 10.1016/S0006-3495(96)79575-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rutkowski C. A., Williams L. M., Haines T. H., Cummins H. Z. The elasticity of synthetic phospholipid vesicles obtained by photon correlation spectroscopy. Biochemistry. 1991 Jun 11;30(23):5688–5696. doi: 10.1021/bi00237a008. [DOI] [PubMed] [Google Scholar]
  16. Xiang T. X., Anderson B. D. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory. Biophys J. 1997 Jan;72(1):223–237. doi: 10.1016/S0006-3495(97)78661-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ye R. G., Verkman A. S. Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry. 1989 Jan 24;28(2):824–829. doi: 10.1021/bi00428a062. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES