Abstract
Micropipette pressurization of giant bilayer vesicles was used to measure both elastic bending k(c) and area stretch K(A) moduli of fluid-phase phosphatidylcholine (PC) membranes. Twelve diacyl PCs were chosen: eight with two 18 carbon chains and degrees of unsaturation from one double bond (C18:1/0, C18:0/1) to six double bonds per lipid (diC18:3), two with short saturated carbon chains (diC13:0, diC14:0), and two with long unsaturated carbon chains (diC20:4, diC22:1). Bending moduli were derived from measurements of apparent expansion in vesicle surface area under very low tensions (0.001-0.5 mN/m), which is dominated by smoothing of thermal bending undulations. Area stretch moduli were obtained from measurements of vesicle surface expansion under high tensions (>0.5 mN/m), which involve an increase in area per molecule and a small-but important-contribution from smoothing of residual thermal undulations. The direct stretch moduli varied little (< +/-10%) with either chain unsaturation or length about a mean of 243 mN/m. On the other hand, the bending moduli of saturated/monounsaturated chain PCs increased progressively with chain length from 0.56 x 10(-19) J for diC13:0 to 1.2 x 10(-19) J for diC22:1. However, quite unexpectedly for longer chains, the bending moduli dropped precipitously to approximately 0.4 x 10(-19) J when two or more cis double bonds were present in a chain (C18:0/2, diC18:2, diC18:3, diC20:4). Given nearly constant area stretch moduli, the variations in bending rigidity with chain length and polyunsaturation implied significant variations in thickness. To test this hypothesis, peak-to-peak headgroup thicknesses h(pp) of bilayers were obtained from x-ray diffraction of multibilayer arrays at controlled relative humidities. For saturated/monounsaturated chain bilayers, the distances h(pp) increased smoothly from diC13:0 to diC22:1 as expected. Moreover, the distances and elastic properties correlated well with a polymer brush model of the bilayer that specifies that the elastic ratio (k(c)/K(A))(1/2) = (h(pp) - h(o))/24, where h(o) approximately 1 nm accounts for separation of the headgroup peaks from the deformable hydrocarbon region. However, the elastic ratios and thicknesses for diC18:2, diC18:3, and diC20:4 fell into a distinct group below the correlation, which showed that poly-cis unsaturated chain bilayers are thinner and more flexible than saturated/monounsaturated chain bilayers.
Full Text
The Full Text of this article is available as a PDF (178.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Applegate K. R., Glomset J. A. Effect of acyl chain unsaturation on the conformation of model diacylglycerols: a computer modeling study. J Lipid Res. 1991 Oct;32(10):1635–1644. [PubMed] [Google Scholar]
- Blaurock A. E., Worthington C. R. Treatment of low angle x-ray data from planar and concentric multilayered structures. Biophys J. 1966 May;6(3):305–312. doi: 10.1016/S0006-3495(66)86658-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bo L., Waugh R. E. Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J. 1989 Mar;55(3):509–517. doi: 10.1016/S0006-3495(89)82844-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantor R. S. Lipid composition and the lateral pressure profile in bilayers. Biophys J. 1999 May;76(5):2625–2639. doi: 10.1016/S0006-3495(99)77415-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E., Bowman H., Leung A., Needham D., Tirrell D. Biomembrane templates for nanoscale conduits and networks. Science. 1996 Aug 16;273(5277):933–935. doi: 10.1126/science.273.5277.933. [DOI] [PubMed] [Google Scholar]
- Evans E, Rawicz W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett. 1990 Apr 23;64(17):2094–2097. doi: 10.1103/PhysRevLett.64.2094. [DOI] [PubMed] [Google Scholar]
- Hallett F. R., Marsh J., Nickel B. G., Wood J. M. Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):435–442. doi: 10.1016/S0006-3495(93)81384-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herbette L., Marquardt J., Scarpa A., Blasie J. K. A direct analysis of lamellar x-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum. Biophys J. 1977 Nov;20(2):245–272. doi: 10.1016/S0006-3495(77)85547-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hitchcock P. B., Mason R., Thomas K. M., Shipley G. G. Structural chemistry of 1,2 dilauroyl-DL-phosphatidylethanolamine: molecular conformation and intermolecular packing of phospholipids. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3036–3040. doi: 10.1073/pnas.71.8.3036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim R. S., LaBella F. S. Comparison of analytical methods for monitoring autoxidation profiles of authentic lipids. J Lipid Res. 1987 Sep;28(9):1110–1117. [PubMed] [Google Scholar]
- Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesicles. Biophys J. 1981 Sep;35(3):637–652. doi: 10.1016/S0006-3495(81)84817-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh T. J., Advani S., Burton R. E., Zhelev D. V., Needham D., Simon S. A. Experimental tests for protrusion and undulation pressures in phospholipid bilayers. Biochemistry. 1995 Jul 11;34(27):8520–8532. doi: 10.1021/bi00027a002. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Holloway P. W. Determination of the depth of bromine atoms in bilayers formed from bromolipid probes. Biochemistry. 1987 Mar 24;26(6):1783–1788. doi: 10.1021/bi00380a042. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Magid A. D., Simon S. A. Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes. Biochemistry. 1989 Jan 10;28(1):17–25. doi: 10.1021/bi00427a004. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Simon S. A. Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry. 1986 Aug 26;25(17):4948–4952. doi: 10.1021/bi00365a034. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Simon S. A. Hydration force and bilayer deformation: a reevaluation. Biochemistry. 1986 Jul 15;25(14):4058–4066. doi: 10.1021/bi00362a011. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Simon S. A., Needham D., Huang C. H. Structure and cohesive properties of sphingomyelin/cholesterol bilayers. Biochemistry. 1992 Feb 25;31(7):2012–2020. doi: 10.1021/bi00122a017. [DOI] [PubMed] [Google Scholar]
- Mui B. L., Cullis P. R., Evans E. A., Madden T. D. Osmotic properties of large unilamellar vesicles prepared by extrusion. Biophys J. 1993 Feb;64(2):443–453. doi: 10.1016/S0006-3495(93)81385-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needham D., McIntosh T. J., Evans E. Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry. 1988 Jun 28;27(13):4668–4673. doi: 10.1021/bi00413a013. [DOI] [PubMed] [Google Scholar]
- Petrache H. I., Tristram-Nagle S., Nagle J. F. Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipids. 1998 Sep;95(1):83–94. doi: 10.1016/s0009-3084(98)00068-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabinovich A. L., Ripatti P. O. On the conformational, physical properties and functions of polyunsaturated acyl chains. Biochim Biophys Acta. 1991 Aug 20;1085(1):53–62. doi: 10.1016/0005-2760(91)90231-6. [DOI] [PubMed] [Google Scholar]
- Rutkowski C. A., Williams L. M., Haines T. H., Cummins H. Z. The elasticity of synthetic phospholipid vesicles obtained by photon correlation spectroscopy. Biochemistry. 1991 Jun 11;30(23):5688–5696. doi: 10.1021/bi00237a008. [DOI] [PubMed] [Google Scholar]
- Smaby J. M., Muderhwa J. M., Brockman H. L. Is lateral phase separation required for fatty acid to stimulate lipases in a phosphatidylcholine interface? Biochemistry. 1994 Feb 22;33(7):1915–1922. doi: 10.1021/bi00173a039. [DOI] [PubMed] [Google Scholar]
- Tristram-Nagle S., Petrache H. I., Nagle J. F. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys J. 1998 Aug;75(2):917–925. doi: 10.1016/S0006-3495(98)77580-0. [DOI] [PMC free article] [PubMed] [Google Scholar]