Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):377–384. doi: 10.1016/S0006-3495(00)76299-0

Dimeric N-terminal segment of human surfactant protein B (dSP-B(1-25)) has enhanced surface properties compared to monomeric SP-B(1-25).

E J Veldhuizen 1, A J Waring 1, F J Walther 1, J J Batenburg 1, L M van Golde 1, H P Haagsman 1
PMCID: PMC1300941  PMID: 10866963

Abstract

Surfactant protein B (SP-B) is a 17-kDa dimeric protein produced by alveolar type II cells. Its main function is to lower the surface tension by inserting lipids into the air/liquid interface of the lung. SP-B's function can be mimicked by a 25-amino acid peptide, SP-B(1-25), which is based on the N-terminal sequence of SP-B. We synthesized a dimeric version of this peptide, dSP-B(1-25), and the two peptides were tested for their surface activity. Both SP-B(1-25) and dSP-B(1-25) showed good lipid mixing and adsorption activities. The dimeric peptide showed activity comparable to that of native SP-B in the pressure-driven captive bubble surfactometer. Spread surface films led to stable near-zero minimum surface tensions during cycling while protein free, and films containing SP-B(1-25) lost material from the interface during compression. We propose that dimerization of the peptide is required to create a lipid reservoir attached to the monolayer from which new material can enter the surface film upon expansion of the air/liquid interface. The dimeric state of SP-B can fulfill the same function in vivo.

Full Text

The Full Text of this article is available as a PDF (89.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson M., Curstedt T., Jörnvall H., Johansson J. An amphipathic helical motif common to tumourolytic polypeptide NK-lysin and pulmonary surfactant polypeptide SP-B. FEBS Lett. 1995 Apr 10;362(3):328–332. doi: 10.1016/0014-5793(95)00268-e. [DOI] [PubMed] [Google Scholar]
  2. Baatz J. E., Elledge B., Whitsett J. A. Surfactant protein SP-B induces ordering at the surface of model membrane bilayers. Biochemistry. 1990 Jul 17;29(28):6714–6720. doi: 10.1021/bi00480a022. [DOI] [PubMed] [Google Scholar]
  3. Beck D. C., Ikegami M., Na C. L., Zaltash S., Johansson J., Whitsett J. A., Weaver T. E. The role of homodimers in surfactant protein B function in vivo. J Biol Chem. 2000 Feb 4;275(5):3365–3370. doi: 10.1074/jbc.275.5.3365. [DOI] [PubMed] [Google Scholar]
  4. Bruni R., Hernández-Juviel J. M., Tanoviceanu R., Walther F. J. Synthetic mimics of surfactant proteins B and C: in vitro surface activity and effects on lung compliance in two animal models of surfactant deficiency. Mol Genet Metab. 1998 Feb;63(2):116–125. doi: 10.1006/mgme.1997.2657. [DOI] [PubMed] [Google Scholar]
  5. Bruni R., Taeusch H. W., Waring A. J. Surfactant protein B: lipid interactions of synthetic peptides representing the amino-terminal amphipathic domain. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7451–7455. doi: 10.1073/pnas.88.16.7451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Byrne K., Tatum J. L., Henry D. A., Hirsch J. I., Crossland M., Barnes T., Thompson J. A., Young J., Sugerman H. J. Increased morbidity with increased pulmonary albumin flux in sepsis-related adult respiratory distress syndrome. Crit Care Med. 1992 Jan;20(1):28–34. doi: 10.1097/00003246-199201000-00012. [DOI] [PubMed] [Google Scholar]
  7. Fields C. G., Lloyd D. H., Macdonald R. L., Otteson K. M., Noble R. L. HBTU activation for automated Fmoc solid-phase peptide synthesis. Pept Res. 1991 Mar-Apr;4(2):95–101. [PubMed] [Google Scholar]
  8. Gordon L. M., Horvath S., Longo M. L., Zasadzinski J. A., Taeusch H. W., Faull K., Leung C., Waring A. J. Conformation and molecular topography of the N-terminal segment of surfactant protein B in structure-promoting environments. Protein Sci. 1996 Aug;5(8):1662–1675. doi: 10.1002/pro.5560050820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gordon L. M., Lee K. Y., Lipp M. M., Zasadzinski J. A., Walther F. J., Sherman M. A., Waring A. J. Conformational mapping of the N-terminal segment of surfactant protein B in lipid using 13C-enhanced Fourier transform infrared spectroscopy. J Pept Res. 2000 Apr;55(4):330–347. doi: 10.1034/j.1399-3011.2000.00693.x. [DOI] [PubMed] [Google Scholar]
  10. Hallman M., Maasilta P., Sipilä I., Tahvanainen J. Composition and function of pulmonary surfactant in adult respiratory distress syndrome. Eur Respir J Suppl. 1989 Mar;3:104s–108s. [PubMed] [Google Scholar]
  11. Johansson J., Nilsson G., Strömberg R., Robertson B., Jörnvall H., Curstedt T. Secondary structure and biophysical activity of synthetic analogues of the pulmonary surfactant polypeptide SP-C. Biochem J. 1995 Apr 15;307(Pt 2):535–541. doi: 10.1042/bj3070535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johansson J., Szyperski T., Curstedt T., Wüthrich K. The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Biochemistry. 1994 May 17;33(19):6015–6023. doi: 10.1021/bi00185a042. [DOI] [PubMed] [Google Scholar]
  13. Jorens P. G., Van Damme J., De Backer W., Bossaert L., De Jongh R. F., Herman A. G., Rampart M. Interleukin 8 (IL-8) in the bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome (ARDS) and patients at risk for ARDS. Cytokine. 1992 Nov;4(6):592–597. doi: 10.1016/1043-4666(92)90025-m. [DOI] [PubMed] [Google Scholar]
  14. Lipp M. M., Lee K. Y., Waring A., Zasadzinski J. A. Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers. Biophys J. 1997 Jun;72(6):2783–2804. doi: 10.1016/S0006-3495(97)78921-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lipp M. M., Lee K. Y., Zasadzinski J. A., Waring A. J. Phase and morphology changes in lipid monolayers induced by SP-B protein and its amino-terminal peptide. Science. 1996 Aug 30;273(5279):1196–1199. doi: 10.1126/science.273.5279.1196. [DOI] [PubMed] [Google Scholar]
  16. Longo M. L., Bisagno A. M., Zasadzinski J. A., Bruni R., Waring A. J. A function of lung surfactant protein SP-B. Science. 1993 Jul 23;261(5120):453–456. doi: 10.1126/science.8332910. [DOI] [PubMed] [Google Scholar]
  17. Matsumoto K., Taki F., Kondoh Y., Taniguchi H., Takagi K. Platelet-activating factor in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Clin Exp Pharmacol Physiol. 1992 Jul;19(7):509–515. doi: 10.1111/j.1440-1681.1992.tb00497.x. [DOI] [PubMed] [Google Scholar]
  18. Nakos G., Pneumatikos J., Tsangaris I., Tellis C., Lekka M. Proteins and phospholipids in BAL from patients with hydrostatic pulmonary edema. Am J Respir Crit Care Med. 1997 Mar;155(3):945–951. doi: 10.1164/ajrccm.155.3.9117030. [DOI] [PubMed] [Google Scholar]
  19. Nilsson G., Gustafsson M., Vandenbussche G., Veldhuizen E., Griffiths W. J., Sjövall J., Haagsman H. P., Ruysschaert J. M., Robertson B., Curstedt T. Synthetic peptide-containing surfactants--evaluation of transmembrane versus amphipathic helices and surfactant protein C poly-valyl to poly-leucyl substitution. Eur J Biochem. 1998 Jul 1;255(1):116–124. doi: 10.1046/j.1432-1327.1998.2550116.x. [DOI] [PubMed] [Google Scholar]
  20. Nogee L. M., Garnier G., Dietz H. C., Singer L., Murphy A. M., deMello D. E., Colten H. R. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest. 1994 Apr;93(4):1860–1863. doi: 10.1172/JCI117173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C. Biochemistry. 1991 Nov 12;30(45):10965–10971. doi: 10.1021/bi00109a022. [DOI] [PubMed] [Google Scholar]
  22. Oosterlaken-Dijksterhuis M. A., van Eijk M., van Golde L. M., Haagsman H. P. Lipid mixing is mediated by the hydrophobic surfactant protein SP-B but not by SP-C. Biochim Biophys Acta. 1992 Sep 21;1110(1):45–50. doi: 10.1016/0005-2736(92)90292-t. [DOI] [PubMed] [Google Scholar]
  23. Patthy L. Homology of the precursor of pulmonary surfactant-associated protein SP-B with prosaposin and sulfated glycoprotein 1. J Biol Chem. 1991 Apr 5;266(10):6035–6037. [PubMed] [Google Scholar]
  24. Putz G., Goerke J., Schürch S., Clements J. A. Evaluation of pressure-driven captive bubble surfactometer. J Appl Physiol (1985) 1994 Apr;76(4):1417–1424. doi: 10.1152/jappl.1994.76.4.1417. [DOI] [PubMed] [Google Scholar]
  25. Putz G., Walch M., Van Eijk M., Haagsman H. P. A spreading technique for forming film in a captive bubble. Biophys J. 1998 Nov;75(5):2229–2239. doi: 10.1016/S0006-3495(98)77667-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Putz G., Walch M., Van Eijk M., Haagsman H. P. Hydrophobic lung surfactant proteins B and C remain associated with surface film during dynamic cyclic area changes. Biochim Biophys Acta. 1999 Jan 6;1453(1):126–134. doi: 10.1016/s0925-4439(98)00092-1. [DOI] [PubMed] [Google Scholar]
  27. Pérez-Gil J., Keough K. M. Interfacial properties of surfactant proteins. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):203–217. doi: 10.1016/s0925-4439(98)00068-4. [DOI] [PubMed] [Google Scholar]
  28. Robertson B., Halliday H. L. Principles of surfactant replacement. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):346–361. doi: 10.1016/s0925-4439(98)00080-5. [DOI] [PubMed] [Google Scholar]
  29. Schürch S., Bachofen H., Goerke J., Possmayer F. A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J Appl Physiol (1985) 1989 Dec;67(6):2389–2396. doi: 10.1152/jappl.1989.67.6.2389. [DOI] [PubMed] [Google Scholar]
  30. Schürch S., Possmayer F., Cheng S., Cockshutt A. M. Pulmonary SP-A enhances adsorption and appears to induce surface sorting of lipid extract surfactant. Am J Physiol. 1992 Aug;263(2 Pt 1):L210–L218. doi: 10.1152/ajplung.1992.263.2.L210. [DOI] [PubMed] [Google Scholar]
  31. Schürch S., Qanbar R., Bachofen H., Possmayer F. The surface-associated surfactant reservoir in the alveolar lining. Biol Neonate. 1995;67 (Suppl 1):61–76. doi: 10.1159/000244207. [DOI] [PubMed] [Google Scholar]
  32. Takei T., Hashimoto Y., Aiba T., Sakai K., Fujiwara T. The surface properties of chemically synthesized peptides analogous to human pulmonary surfactant protein SP-C. Biol Pharm Bull. 1996 Oct;19(10):1247–1253. doi: 10.1248/bpb.19.1247. [DOI] [PubMed] [Google Scholar]
  33. Tokieda K., Whitsett J. A., Clark J. C., Weaver T. E., Ikeda K., McConnell K. B., Jobe A. H., Ikegami M., Iwamoto H. S. Pulmonary dysfunction in neonatal SP-B-deficient mice. Am J Physiol. 1997 Oct;273(4 Pt 1):L875–L882. doi: 10.1152/ajplung.1997.273.4.L875. [DOI] [PubMed] [Google Scholar]
  34. Veldhuizen E. J., Batenburg J. J., Vandenbussche G., Putz G., van Golde L. M., Haagsman H. P. Production of surfactant protein C in the baculovirus expression system: the information required for correct folding and palmitoylation of SP-C is contained within the mature sequence. Biochim Biophys Acta. 1999 Jan 12;1416(1-2):295–308. doi: 10.1016/s0005-2736(98)00230-2. [DOI] [PubMed] [Google Scholar]
  35. Waring A., Taeusch W., Bruni R., Amirkhanian J., Fan B., Stevens R., Young J. Synthetic amphipathic sequences of surfactant protein-B mimic several physicochemical and in vivo properties of native pulmonary surfactant proteins. Pept Res. 1989 Sep-Oct;2(5):308–313. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES