Abstract
Giant unilamellar vesicles (GUVs) composed of different phospholipid binary mixtures were studied at different temperatures, by a method combining the sectioning capability of the two-photon excitation fluorescence microscope and the partition and spectral properties of 6-dodecanoyl-2-dimethylamino-naphthalene (Laurdan) and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE). We analyzed and compared fluorescence images of GUVs composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DLPC/DPPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DLPC/DSPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-diarachidoyl-sn-glycero-3-phosphocholine (DLPC/DAPC), 1, 2-dimyristoyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DMPC/DSPC) (1:1 mol/mol in all cases), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine/1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPE/DMPC) (7:3 mol/mol) at temperatures corresponding to the fluid phase and the fluid-solid phase coexistence. In addition, we studied the solid-solid temperature regime for the DMPC/DSPC and DMPE/DMPC mixtures. From the Laurdan intensity images the generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domains. We found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region for all of the lipid mixtures. At temperatures corresponding to phase coexistence we observed concurrent fluid and solid domains in the GUVs independent of the lipid mixture. In all cases the lipid solid domains expanded and migrated around the vesicle surface as we decreased the temperature. The migration of the solid domains decreased dramatically at temperatures close to the solid-fluid-->solid phase transition. For the DLPC-containing mixtures, the solid domains showed line, quasicircular, and dendritic shapes as the difference in the hydrophobic chain length between the components of the binary mixture increases. In addition, for the saturated PC-containing mixtures, we found a linear relationship between the GP values for the fluid and solid domains and the difference between the hydrophobic chain length of the binary mixture components. Specifically, at the phase coexistence temperature region the difference in the GP values, associated with the fluid and solid domains, increases as the difference in the chain length of the binary mixture component increases. This last finding suggests that in the solid-phase domains, the local concentration of the low melting temperature phospholipid component increases as the hydrophobic mismatch decreases. At the phase coexistence temperature regime and based on the Laurdan GP data, we observe that when the hydrophobic mismatch is 8 (DLPC/DAPC), the concentration of the low melting temperature phospholipid component in the solid domains is negligible. This last observation extends to the saturated PE/PC mixtures at the phase coexistence temperature range. For the DMPC/DSPC we found that the nonfluorescent solid regions gradually disappear in the solid temperature regime of the phase diagram, suggesting lipid miscibility. This last result is in contrast with that found for DMPE/DMPC mixtures, where the solid domains remain on the GUV surface at temperatures corresponding to that of the solid region. In all cases the solid domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This last finding extends previous observations of GUVs composed of DPPE/DPPC and DLPC/DPPC mixtures (, Biophys. J. 78:290-305).
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angelova M. I., Hristova N., Tsoneva I. DNA-induced endocytosis upon local microinjection to giant unilamellar cationic vesicles. Eur Biophys J. 1999;28(2):142–150. doi: 10.1007/s002490050193. [DOI] [PubMed] [Google Scholar]
- Arnold K., Lösche A., Gawrisch K. 31p-NMR investigations of phase separation in phosphatidylcholine/phosphatidylethanolamine mixtures. Biochim Biophys Acta. 1981 Jul 6;645(1):143–148. doi: 10.1016/0005-2736(81)90522-8. [DOI] [PubMed] [Google Scholar]
- Bagatolli L. A., Gratton E., Fidelio G. D. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Biophys J. 1998 Jul;75(1):331–341. doi: 10.1016/S0006-3495(98)77517-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagatolli L. A., Gratton E. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J. 2000 Jan;78(1):290–305. doi: 10.1016/S0006-3495(00)76592-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagatolli L. A., Gratton E. Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J. 1999 Oct;77(4):2090–2101. doi: 10.1016/S0006-3495(99)77050-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagatolli L. A., Parasassi T., Gratton E. Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods: a two photon fluorescence microscopy study. Chem Phys Lipids. 2000 Apr;105(2):135–147. doi: 10.1016/s0009-3084(00)00118-3. [DOI] [PubMed] [Google Scholar]
- Blume A., Wittebort R. J., Das Gupta S. K., Griffin R. G. Phase equilibria, molecular conformation, and dynamics in phosphatidylcholine/phosphatidylethanolamine bilayers. Biochemistry. 1982 Nov 23;21(24):6243–6253. doi: 10.1021/bi00267a032. [DOI] [PubMed] [Google Scholar]
- Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
- Caffrey M., Hing F. S. A temperature gradient method for lipid phase diagram construction using time-resolved x-ray diffraction. Biophys J. 1987 Jan;51(1):37–46. doi: 10.1016/S0006-3495(87)83309-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E., Kwok R. Mechanical calorimetry of large dimyristoylphosphatidylcholine vesicles in the phase transition region. Biochemistry. 1982 Sep 28;21(20):4874–4879. doi: 10.1021/bi00263a007. [DOI] [PubMed] [Google Scholar]
- Gliss C., Clausen-Schaumann H., Günther R., Odenbach S., Randl O., Bayerl T. M. Direct detection of domains in phospholipid bilayers by grazing incidence diffraction of neutrons and atomic force microscopy. Biophys J. 1998 May;74(5):2443–2450. doi: 10.1016/S0006-3495(98)77952-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grainger D. W., Reichert A., Ringsdorf H., Salesse C. Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy. Biochim Biophys Acta. 1990 Apr 30;1023(3):365–379. doi: 10.1016/0005-2736(90)90128-b. [DOI] [PubMed] [Google Scholar]
- Haverstick D. M., Glaser M. Influence of proteins on the reorganization of phospholipid bilayers into large domains. Biophys J. 1989 Apr;55(4):677–682. doi: 10.1016/S0006-3495(89)82866-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haverstick D. M., Glaser M. Visualization of Ca2+-induced phospholipid domains. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4475–4479. doi: 10.1073/pnas.84.13.4475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holopainen J. M., Angelova M. I., Kinnunen P. K. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J. 2000 Feb;78(2):830–838. doi: 10.1016/S0006-3495(00)76640-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ipsen J. H., Mouritsen O. G. Modelling the phase equilibria in two-component membranes of phospholipids with different acyl-chain lengths. Biochim Biophys Acta. 1988 Oct 6;944(2):121–134. doi: 10.1016/0005-2736(88)90425-7. [DOI] [PubMed] [Google Scholar]
- Jørgensen K., Mouritsen O. G. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys J. 1995 Sep;69(3):942–954. doi: 10.1016/S0006-3495(95)79968-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jørgensen K., Sperotto M. M., Mouritsen O. G., Ipsen J. H., Zuckermann M. J. Phase equilibria and local structure in binary lipid bilayers. Biochim Biophys Acta. 1993 Oct 10;1152(1):135–145. doi: 10.1016/0005-2736(93)90240-z. [DOI] [PubMed] [Google Scholar]
- Korlach J., Schwille P., Webb W. W., Feigenson G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8461–8466. doi: 10.1073/pnas.96.15.8461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee A. G. Fluorescence studies of chlorophyll a incorporated into lipid mixtures, and the interpretation of "phase" diagrams. Biochim Biophys Acta. 1975 Nov 17;413(1):11–23. doi: 10.1016/0005-2736(75)90054-1. [DOI] [PubMed] [Google Scholar]
- Lentz B. R., Barenholz Y., Thompson T. E. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes. Biochemistry. 1976 Oct 5;15(20):4529–4537. doi: 10.1021/bi00665a030. [DOI] [PubMed] [Google Scholar]
- Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathivet L., Cribier S., Devaux P. F. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophys J. 1996 Mar;70(3):1112–1121. doi: 10.1016/S0006-3495(96)79693-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menger F. M., Keiper J. S. Chemistry and physics of giant vesicles as biomembrane models. Curr Opin Chem Biol. 1998 Dec;2(6):726–732. doi: 10.1016/s1367-5931(98)80110-5. [DOI] [PubMed] [Google Scholar]
- Méléard P., Gerbeaud C., Bardusco P., Jeandaine N., Mitov M. D., Fernandez-Puente L. Mechanical properties of model membranes studied from shape transformations of giant vesicles. Biochimie. 1998 May-Jun;80(5-6):401–413. doi: 10.1016/s0300-9084(00)80008-5. [DOI] [PubMed] [Google Scholar]
- Méléard P., Gerbeaud C., Pott T., Fernandez-Puente L., Bivas I., Mitov M. D., Dufourcq J., Bothorel P. Bending elasticities of model membranes: influences of temperature and sterol content. Biophys J. 1997 Jun;72(6):2616–2629. doi: 10.1016/S0006-3495(97)78905-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Möhwald H., Dietrich A., Böhm C., Brezesinski G., Thoma M. Domain formation in monolayers. Mol Membr Biol. 1995 Jan-Mar;12(1):29–38. doi: 10.3109/09687689509038492. [DOI] [PubMed] [Google Scholar]
- Needham D., Evans E. Structure and mechanical properties of giant lipid (DMPC) vesicle bilayers from 20 degrees C below to 10 degrees C above the liquid crystal-crystalline phase transition at 24 degrees C. Biochemistry. 1988 Oct 18;27(21):8261–8269. doi: 10.1021/bi00421a041. [DOI] [PubMed] [Google Scholar]
- Needham D., McIntosh T. J., Evans E. Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry. 1988 Jun 28;27(13):4668–4673. doi: 10.1021/bi00413a013. [DOI] [PubMed] [Google Scholar]
- Parasassi T., De Stasio G., Ravagnan G., Rusch R. M., Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J. 1991 Jul;60(1):179–189. doi: 10.1016/S0006-3495(91)82041-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parasassi T., De Stasio G., d'Ubaldo A., Gratton E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J. 1990 Jun;57(6):1179–1186. doi: 10.1016/S0006-3495(90)82637-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parasassi T., Gratton E., Yu W. M., Wilson P., Levi M. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J. 1997 Jun;72(6):2413–2429. doi: 10.1016/S0006-3495(97)78887-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parasassi T., Ravagnan G., Rusch R. M., Gratton E. Modulation and dynamics of phase properties in phospholipid mixtures detected by Laurdan fluorescence. Photochem Photobiol. 1993 Mar;57(3):403–410. doi: 10.1111/j.1751-1097.1993.tb02309.x. [DOI] [PubMed] [Google Scholar]
- Raudino A. Lateral inhomogeneous lipid membranes: theoretical aspects. Adv Colloid Interface Sci. 1995 May 30;57:229–285. doi: 10.1016/0001-8686(95)00243-j. [DOI] [PubMed] [Google Scholar]
- Sackmann E., Feder T. Budding, fission and domain formation in mixed lipid vesicles induced by lateral phase separation and macromolecular condensation. Mol Membr Biol. 1995 Jan-Mar;12(1):21–28. doi: 10.3109/09687689509038491. [DOI] [PubMed] [Google Scholar]
- Sackmann E. The seventh Datta Lecture. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett. 1994 Jun 6;346(1):3–16. doi: 10.1016/0014-5793(94)00484-6. [DOI] [PubMed] [Google Scholar]
- Shimshick E. J., McConnell H. M. Lateral phase separation in phospholipid membranes. Biochemistry. 1973 Jun 5;12(12):2351–2360. doi: 10.1021/bi00736a026. [DOI] [PubMed] [Google Scholar]
- Wick R., Angelova M. I., Walde P., Luisi P. L. Microinjection into giant vesicles and light microscopy investigation of enzyme-mediated vesicle transformations. Chem Biol. 1996 Feb;3(2):105–111. doi: 10.1016/s1074-5521(96)90286-0. [DOI] [PubMed] [Google Scholar]
- Yu W., So P. T., French T., Gratton E. Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. Biophys J. 1996 Feb;70(2):626–636. doi: 10.1016/S0006-3495(96)79646-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Dijck P. W., Kaper A. J., Oonk H. A., de Gier J. Miscibility properties of binary phosphatidylcholine mixtures. A calorimetric study. Biochim Biophys Acta. 1977 Oct 3;470(1):58–69. doi: 10.1016/0005-2736(77)90061-x. [DOI] [PubMed] [Google Scholar]