Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):448–459. doi: 10.1016/S0006-3495(00)76306-5

Outer membrane monolayer domains from two-dimensional surface scanning resistance measurements.

K Suzuki 1, R E Sterba 1, M P Sheetz 1
PMCID: PMC1300948  PMID: 10866970

Abstract

Cellular plasma membranes have domains that are defined, in most cases, by cytoskeletal elements. The outer half of the bilayer may also contain domains that organize glycosylphosphatidylinositol (GPI)-linked proteins. To define outer membrane barriers, we measured the resistive force on membrane bound beads as they were scanned across the plasma membrane of HEPA-OVA cells with optical laser tweezers. Beads were bound by antibodies to fluorescein-phosphatidylethanolamine (Fl-PE) or to the class I major histocompatibility complex (MHC class I) Qa-2 (a GPI-anchored protein). Two-dimensional scans of resistive force showed both occasional, resistive barriers and a velocity-dependent, continuous resistance. At the lowest antibody concentration, which gave specific binding, the continuous friction coefficient of Qa-2 was consistent with that observed by single-particle tracking (SPT) of small gold particles. At high antibody concentrations, the friction coefficient was significantly higher but decreased with increasing temperature, addition of deoxycholic acid, or treatment with heparinase I. Barriers to lateral movement (>3 times the continuous resistance) were consistently observed. Elastic barriers (with elastic constants from 1 to 20 pN/microm and sensitive to cytochalasin D) and small nonelastic barriers (<100 nm) were specifically observed with beads bound to the GPI-linked Qa-2. We suggest that GPI-linked proteins interact with transmembrane proteins when aggregated by antibody-coated beads and the transmembrane proteins encounter cytoplasmic barriers to lateral movement. The barriers to lateral movement are dynamic, discontinuous, and low in density.

Full Text

The Full Text of this article is available as a PDF (594.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
  2. Bussell S. J., Koch D. L., Hammer D. A. Effect of hydrodynamic interactions on the diffusion of integral membrane proteins: diffusion in plasma membranes. Biophys J. 1995 May;68(5):1836–1849. doi: 10.1016/S0006-3495(95)80360-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bussell S. J., Koch D. L., Hammer D. A. Effect of hydrodynamic interactions on the diffusion of integral membrane proteins: tracer diffusion in organelle and reconstituted membranes. Biophys J. 1995 May;68(5):1828–1835. doi: 10.1016/S0006-3495(95)80359-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dai J., Sheetz M. P. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J. 1995 Mar;68(3):988–996. doi: 10.1016/S0006-3495(95)80274-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edidin M., Kuo S. C., Sheetz M. P. Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. Science. 1991 Nov 29;254(5036):1379–1382. doi: 10.1126/science.1835798. [DOI] [PubMed] [Google Scholar]
  6. Edidin M. Lipid microdomains in cell surface membranes. Curr Opin Struct Biol. 1997 Aug;7(4):528–532. doi: 10.1016/s0959-440x(97)80117-0. [DOI] [PubMed] [Google Scholar]
  7. Edidin M., Stroynowski I. Differences between the lateral organization of conventional and inositol phospholipid-anchored membrane proteins. A further definition of micrometer scale membrane domains. J Cell Biol. 1991 Mar;112(6):1143–1150. doi: 10.1083/jcb.112.6.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Enderle T., Ha T., Ogletree D. F., Chemla D. S., Magowan C., Weiss S. Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):520–525. doi: 10.1073/pnas.94.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans E., Berk D., Leung A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys J. 1991 Apr;59(4):838–848. doi: 10.1016/S0006-3495(91)82296-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Felsenfeld D. P., Choquet D., Sheetz M. P. Ligand binding regulates the directed movement of beta1 integrins on fibroblasts. Nature. 1996 Oct 3;383(6599):438–440. doi: 10.1038/383438a0. [DOI] [PubMed] [Google Scholar]
  11. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  12. Hahn A. B., Tian H., Wiegand G., Soloski M. J. Signals delivered via the Qa-2 molecule can synergize with limiting anti-CD3-induced signals to cause T lymphocyte activation. Immunol Invest. 1992 Jun;21(3):203–217. doi: 10.3109/08820139209072259. [DOI] [PubMed] [Google Scholar]
  13. Hwang J., Gheber L. A., Margolis L., Edidin M. Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys J. 1998 May;74(5):2184–2190. doi: 10.1016/S0006-3495(98)77927-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kirchhausen T., Bonifacino J. S., Riezman H. Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr Opin Cell Biol. 1997 Aug;9(4):488–495. doi: 10.1016/s0955-0674(97)80024-5. [DOI] [PubMed] [Google Scholar]
  15. Koppel D. E., Sheetz M. P., Schindler M. Matrix control of protein diffusion in biological membranes. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3576–3580. doi: 10.1073/pnas.78.6.3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kucik D. F., Elson E. L., Sheetz M. P. Weak dependence of mobility of membrane protein aggregates on aggregate size supports a viscous model of retardation of diffusion. Biophys J. 1999 Jan;76(1 Pt 1):314–322. doi: 10.1016/S0006-3495(99)77198-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kucik D. F., Kuo S. C., Elson E. L., Sheetz M. P. Preferential attachment of membrane glycoproteins to the cytoskeleton at the leading edge of lamella. J Cell Biol. 1991 Sep;114(5):1029–1036. doi: 10.1083/jcb.114.5.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kusumi A., Sako Y. Cell surface organization by the membrane skeleton. Curr Opin Cell Biol. 1996 Aug;8(4):566–574. doi: 10.1016/s0955-0674(96)80036-6. [DOI] [PubMed] [Google Scholar]
  19. Kusumi A., Sako Y., Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993 Nov;65(5):2021–2040. doi: 10.1016/S0006-3495(93)81253-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee G. M., Zhang F., Ishihara A., McNeil C. L., Jacobson K. A. Unconfined lateral diffusion and an estimate of pericellular matrix viscosity revealed by measuring the mobility of gold-tagged lipids. J Cell Biol. 1993 Jan;120(1):25–35. doi: 10.1083/jcb.120.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sako Y., Kusumi A. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J Cell Biol. 1995 Jun;129(6):1559–1574. doi: 10.1083/jcb.129.6.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sako Y., Nagafuchi A., Tsukita S., Takeichi M., Kusumi A. Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol. 1998 Mar 9;140(5):1227–1240. doi: 10.1083/jcb.140.5.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saxton M. J. Lateral diffusion in a mixture of mobile and immobile particles. A Monte Carlo study. Biophys J. 1990 Nov;58(5):1303–1306. doi: 10.1016/S0006-3495(90)82470-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schröder O., Rathner W., Caspary W. F., Stein J. Bile acid-induced increase of rat colonic apical membrane fluidity and proton permeability. Z Gastroenterol. 1996 Jun;34(6):365–370. [PubMed] [Google Scholar]
  27. Sheets E. D., Lee G. M., Simson R., Jacobson K. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry. 1997 Oct 14;36(41):12449–12458. doi: 10.1021/bi9710939. [DOI] [PubMed] [Google Scholar]
  28. Sheetz M. P., Turney S., Qian H., Elson E. L. Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature. 1989 Jul 27;340(6231):284–288. doi: 10.1038/340284a0. [DOI] [PubMed] [Google Scholar]
  29. Shenoy-Scaria A. M., Kwong J., Fujita T., Olszowy M. W., Shaw A. S., Lublin D. M. Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J Immunol. 1992 Dec 1;149(11):3535–3541. [PubMed] [Google Scholar]
  30. Simmons R. M., Finer J. T., Chu S., Spudich J. A. Quantitative measurements of force and displacement using an optical trap. Biophys J. 1996 Apr;70(4):1813–1822. doi: 10.1016/S0006-3495(96)79746-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  32. Simson R., Yang B., Moore S. E., Doherty P., Walsh F. S., Jacobson K. A. Structural mosaicism on the submicron scale in the plasma membrane. Biophys J. 1998 Jan;74(1):297–308. doi: 10.1016/S0006-3495(98)77787-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stefanová I., Horejsí V., Ansotegui I. J., Knapp W., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991 Nov 15;254(5034):1016–1019. doi: 10.1126/science.1719635. [DOI] [PubMed] [Google Scholar]
  34. Takeuchi M., Miyamoto H., Sako Y., Komizu H., Kusumi A. Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys J. 1998 May;74(5):2171–2183. doi: 10.1016/S0006-3495(98)77926-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tees D. F., Goldsmith H. L. Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. I. Protein-carbohydrate bond. Biophys J. 1996 Aug;71(2):1102–1114. doi: 10.1016/S0006-3495(96)79312-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tomishige M., Sako Y., Kusumi A. Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol. 1998 Aug 24;142(4):989–1000. doi: 10.1083/jcb.142.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Uchida N., Honjo Y., Johnson K. R., Wheelock M. J., Takeichi M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J Cell Biol. 1996 Nov;135(3):767–779. doi: 10.1083/jcb.135.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhao D. L., Hirst B. H. Bile salt-induced increases in duodenal brush-border membrane proton permeability, fluidity, and fragility. Dig Dis Sci. 1990 May;35(5):589–595. doi: 10.1007/BF01540406. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES