Abstract
The relationship between the elastic and dynamic properties of native globular proteins is considered on the basis of a wide set of reported experimental data. The formation of a small cavity, capable of accommodating water, in the protein interior is associated with the elastic deformation, whose contribution to the free energy considerably exceeds the heat motion energy. Mechanically, the protein molecule is a highly nonlinear system. This means that its compressibility sharply decreases upon compression. The mechanical nonlinearity results in the following consequences related to the intramolecular dynamics of proteins: 1) The sign of the electrostriction effect in the protein matrix is opposite that observed in liquids-this is an additional indication that protein behaves like a solid particle. 2) The diffusion of an ion from the solvent to the interior of a protein should depend on pressure nonmonotonically: at low pressure diffusion is suppressed, while at high pressure it is enhanced. Such behavior is expected to display itself in any dynamic process depending on ion diffusion. Qualitative and quantitative expectations ensuing from the mechanical properties are concordant with the available experimental data on hydrogen exchange in native proteins at ambient and high pressure.
Full Text
The Full Text of this article is available as a PDF (140.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abaturov L. V., Lebedev Iu O., Nosova N. G. Dinamicheskaia struktura globuliarnykh belkov: konformatsionnaia zhestkost' i fluktuatsionnaia podvizhnost'. Mol Biol (Mosk) 1983 May-Jun;17(3):543–568. [PubMed] [Google Scholar]
- Akasaka K., Tezuka T., Yamada H. Pressure-induced changes in the folded structure of lysozyme. J Mol Biol. 1997 Sep 5;271(5):671–678. doi: 10.1006/jmbi.1997.1208. [DOI] [PubMed] [Google Scholar]
- Almagor A., Priev A., Barshtein G., Gavish B., Yedgar S. Reduction of protein volume and compressibility by macromolecular cosolvents: dependence on the cosolvent molecular weight. Biochim Biophys Acta. 1998 Jan 15;1382(1):151–156. doi: 10.1016/s0167-4838(97)00174-x. [DOI] [PubMed] [Google Scholar]
- Benson E. S., Rossi Fanelli M. R., Giacometti G. M., Rosenberg A., Antonini E. Effects of ligand binding on the rates of hydrogen exchange in myoglobin and hemoglobin. Biochemistry. 1973 Jul 3;12(14):2699–2706. doi: 10.1021/bi00738a024. [DOI] [PubMed] [Google Scholar]
- Calhoun D. B., Vanderkooi J. M., Woodrow G. V., 3rd, Englander S. W. Penetration of dioxygen into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry. 1983 Mar 29;22(7):1526–1532. doi: 10.1021/bi00276a002. [DOI] [PubMed] [Google Scholar]
- Carter J. V., Knox D. G., Rosenberg A. Pressure effects on folded proteins in solution. Hydrogen exchange at elevated pressures. J Biol Chem. 1978 Mar 25;253(6):1947–1953. [PubMed] [Google Scholar]
- Chalikian T. V., Totrov M., Abagyan R., Breslauer K. J. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. J Mol Biol. 1996 Jul 26;260(4):588–603. doi: 10.1006/jmbi.1996.0423. [DOI] [PubMed] [Google Scholar]
- Chalikian T. V., Völker J., Anafi D., Breslauer K. J. The native and the heat-induced denatured states of alpha-chymotrypsinogen A: thermodynamic and spectroscopic studies. J Mol Biol. 1997 Nov 28;274(2):237–252. doi: 10.1006/jmbi.1997.1394. [DOI] [PubMed] [Google Scholar]
- Cooper A. Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2740–2741. doi: 10.1073/pnas.73.8.2740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daopin S., Alber T., Baase W. A., Wozniak J. A., Matthews B. W. Structural and thermodynamic analysis of the packing of two alpha-helices in bacteriophage T4 lysozyme. J Mol Biol. 1991 Sep 20;221(2):647–667. doi: 10.1016/0022-2836(91)80079-a. [DOI] [PubMed] [Google Scholar]
- Eden D., Matthew J. B., Rosa J. J., Richards F. M. Increase in apparent compressibility of cytochrome c upon oxidation. Proc Natl Acad Sci U S A. 1982 Feb;79(3):815–819. doi: 10.1073/pnas.79.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
- Englander S. W., Mayne L., Bai Y., Sosnick T. R. Hydrogen exchange: the modern legacy of Linderstrøm-Lang. Protein Sci. 1997 May;6(5):1101–1109. doi: 10.1002/pro.5560060517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuentes E. J., Wand A. J. Local stability and dynamics of apocytochrome b562 examined by the dependence of hydrogen exchange on hydrostatic pressure. Biochemistry. 1998 Jul 14;37(28):9877–9883. doi: 10.1021/bi980894o. [DOI] [PubMed] [Google Scholar]
- Gavish B., Gratton E., Hardy C. J. Adiabatic compressibility of globular proteins. Proc Natl Acad Sci U S A. 1983 Feb;80(3):750–754. doi: 10.1073/pnas.80.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorelov A. V., Morozov V. N. Mechanical denaturation of globular protein in the solid state. Biophys Chem. 1987 Dec;28(3):199–205. doi: 10.1016/0301-4622(87)80090-x. [DOI] [PubMed] [Google Scholar]
- Hitchens T. K., Bryant R. G. Pressure dependence of amide hydrogen-deuterium exchange rates for individual sites in T4 lysozyme. Biochemistry. 1998 Apr 28;37(17):5878–5887. doi: 10.1021/bi972950b. [DOI] [PubMed] [Google Scholar]
- Hubbard S. J., Gross K. H., Argos P. Intramolecular cavities in globular proteins. Protein Eng. 1994 May;7(5):613–626. doi: 10.1093/protein/7.5.613. [DOI] [PubMed] [Google Scholar]
- Inoue K., Yamada H., Imoto T., Akasaka K. High pressure NMR study of a small protein, gurmarin. J Biomol NMR. 1998 Nov;12(4):535–541. doi: 10.1023/a:1008374109437. [DOI] [PubMed] [Google Scholar]
- Kaminsky S. M., Richards F. M. Differences in hydrogen exchange behavior between the oxidized and reduced forms of Escherichia coli thioredoxin. Protein Sci. 1992 Jan;1(1):10–21. doi: 10.1002/pro.5560010103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaminsky S. M., Richards F. M. Reduction of thioredoxin significantly decreases its partial specific volume and adiabatic compressibility. Protein Sci. 1992 Jan;1(1):22–30. doi: 10.1002/pro.5560010104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpusas M., Baase W. A., Matsumura M., Matthews B. W. Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8237–8241. doi: 10.1073/pnas.86.21.8237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katrusiak A., Dauter Z. Compressibility of lysozyme protein crystals by X-ray diffraction. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):607–608. doi: 10.1107/S0907444996000431. [DOI] [PubMed] [Google Scholar]
- Kellis J. T., Jr, Nyberg K., Sali D., Fersht A. R. Contribution of hydrophobic interactions to protein stability. Nature. 1988 Jun 23;333(6175):784–786. doi: 10.1038/333784a0. [DOI] [PubMed] [Google Scholar]
- Kharakoz D. P., Bychkova V. E. Molten globule of human alpha-lactalbumin: hydration, density, and compressibility of the interior. Biochemistry. 1997 Feb 18;36(7):1882–1890. doi: 10.1021/bi960264r. [DOI] [PubMed] [Google Scholar]
- Kharakoz D. P., Mkhitarian A. G. Izmenenie szhimaemosti globuly tsitokhroma c pri okislitel'no-vosstanovitel'nom perekhode. Mol Biol (Mosk) 1986 Mar-Apr;20(2):396–406. [PubMed] [Google Scholar]
- Kharakoz D. P. Partial volumes and compressibilities of extended polypeptide chains in aqueous solution: additivity scheme and implication of protein unfolding at normal and high pressure. Biochemistry. 1997 Aug 19;36(33):10276–10285. doi: 10.1021/bi961781c. [DOI] [PubMed] [Google Scholar]
- Kharakoz D. P., Sarvazyan A. P. Hydrational and intrinsic compressibilities of globular proteins. Biopolymers. 1993 Jan;33(1):11–26. doi: 10.1002/bip.360330103. [DOI] [PubMed] [Google Scholar]
- Klapper M. H. On the nature of the protein interior. Biochim Biophys Acta. 1971 Mar 23;229(3):557–566. doi: 10.1016/0005-2795(71)90271-6. [DOI] [PubMed] [Google Scholar]
- Kobayashi N., Yamato T., Go N. Mechanical property of a TIM-barrel protein. Proteins. 1997 May;28(1):109–116. doi: 10.1002/(sici)1097-0134(199705)28:1<109::aid-prot11>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- Kocher J. P., Prévost M., Wodak S. J., Lee B. Properties of the protein matrix revealed by the free energy of cavity formation. Structure. 1996 Dec 15;4(12):1517–1529. doi: 10.1016/s0969-2126(96)00157-8. [DOI] [PubMed] [Google Scholar]
- Kornblatt J. A., Hoa G. H. A nontraditional role for water in the cytochrome c oxidase reaction. Biochemistry. 1990 Oct 9;29(40):9370–9376. doi: 10.1021/bi00492a010. [DOI] [PubMed] [Google Scholar]
- Kornblatt J. A., Kornblatt M. J., Rajotte I., Hoa G. H., Kahn P. C. Thermodynamic volume cycles for electron transfer in the cytochrome c oxidase and for the binding of cytochrome c to cytochrome c oxidase. Biophys J. 1998 Jul;75(1):435–444. doi: 10.1016/S0006-3495(98)77531-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krishtalik L. I., Kuznetsov A. M., Mertz E. L. Electrostatics of proteins: description in terms of two dielectric constants simultaneously. Proteins. 1997 Jun;28(2):174–182. [PubMed] [Google Scholar]
- Kundrot C. E., Richards F. M. Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres. J Mol Biol. 1987 Jan 5;193(1):157–170. doi: 10.1016/0022-2836(87)90634-6. [DOI] [PubMed] [Google Scholar]
- Leeson D. T., Wiersma D. A. Looking into the energy landscape of myoglobin. Nat Struct Biol. 1995 Oct;2(10):848–851. doi: 10.1038/nsb1095-848. [DOI] [PubMed] [Google Scholar]
- Leung W. P., Cho K. C., Lo Y. M., Choy C. L. Adiabatic compressibility of myoglobin. Effect of axial ligand and denaturation. Biochim Biophys Acta. 1986 Mar 7;870(1):148–153. doi: 10.1016/0167-4838(86)90018-x. [DOI] [PubMed] [Google Scholar]
- Li H., Yamada H., Akasaka K. Effect of pressure on individual hydrogen bonds in proteins. Basic pancreatic trypsin inhibitor. Biochemistry. 1998 Feb 3;37(5):1167–1173. doi: 10.1021/bi972288j. [DOI] [PubMed] [Google Scholar]
- Morozov V. N., Morozova TYa Elasticity of globular proteins. The relation between mechanics, thermodynamics and mobility. J Biomol Struct Dyn. 1993 Dec;11(3):459–481. doi: 10.1080/07391102.1993.10508010. [DOI] [PubMed] [Google Scholar]
- Morozov V. N., Morozova TYa Thermal motion of whole protein molecules in protein solids. J Theor Biol. 1986 Jul 7;121(1):73–88. doi: 10.1016/s0022-5193(86)80029-7. [DOI] [PubMed] [Google Scholar]
- Morozova T. Ia, Morozov V. N. O mekhanizme stabiliziruiushchego vliianiia gliukozy na lizotsim v kristallicheskom sostoianii. Biofizika. 1983 Nov-Dec;28(6):952–957. [PubMed] [Google Scholar]
- Nikitin S. Ia, Sarvazian A. P., Kravchenko N. A. Ul'trazvukovaia velosimetriia rastvorov lizotsima. Mol Biol (Mosk) 1984 May-Jun;18(3):831–838. [PubMed] [Google Scholar]
- Noguti T., Go N. Structural basis of hierarchical multiple substates of a protein. V: Nonlocal deformations. Proteins. 1989;5(2):132–138. doi: 10.1002/prot.340050207. [DOI] [PubMed] [Google Scholar]
- Paci E., Marchi M. Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11609–11614. doi: 10.1073/pnas.93.21.11609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panchenko A. R., Shaitan K. V. O mekhanizme vliianiia davleniia na vnutrimolekuliarnuiu dinamiku belkov. Mol Biol (Mosk) 1992 Sep-Oct;26(5):1116–1121. [PubMed] [Google Scholar]
- Patel D. J., Canuel L. L. Nuclear magnetic resonance studies of slowly exchanging peptide protons in cytochrome c in aqueous solution. Proc Natl Acad Sci U S A. 1976 May;73(5):1398–1402. doi: 10.1073/pnas.73.5.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pavlov M. Iu, Fedorov B. A. Metod rascheta poverkhnosti i ob"ema belka v rastvoritele. Biofizika. 1982 Jul-Aug;27(4):609–613. [PubMed] [Google Scholar]
- Priev A., Almagor A., Yedgar S., Gavish B. Glycerol decreases the volume and compressibility of protein interior. Biochemistry. 1996 Feb 20;35(7):2061–2066. doi: 10.1021/bi951842r. [DOI] [PubMed] [Google Scholar]
- Rashin A. A., Iofin M., Honig B. Internal cavities and buried waters in globular proteins. Biochemistry. 1986 Jun 17;25(12):3619–3625. doi: 10.1021/bi00360a021. [DOI] [PubMed] [Google Scholar]
- Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
- Sarvazyan A. P. Ultrasonic velocimetry of biological compounds. Annu Rev Biophys Biophys Chem. 1991;20:321–342. doi: 10.1146/annurev.bb.20.060191.001541. [DOI] [PubMed] [Google Scholar]
- Shakhnovich E. I., Finkelstein A. V. Theory of cooperative transitions in protein molecules. I. Why denaturation of globular protein is a first-order phase transition. Biopolymers. 1989 Oct;28(10):1667–1680. doi: 10.1002/bip.360281003. [DOI] [PubMed] [Google Scholar]
- Shliapnikova E. A., Savitskii A. P., Kachalova G. S. Dostupnost' porfinovogo makrotsikla v mioglobine pri raznykh pH. Fluorestsentnoe issledovanie porfirin-globinovogo kompleksa. Mol Biol (Mosk) 1986 Jan-Feb;20(1):138–145. [PubMed] [Google Scholar]
- Suzdalev I. P., Kurinov I. V., Livshits L. D., Krupianskii Iu F., Gol'danskii V. I. Vliianie vysokogo davleniia na dinamiku belkov po dannym réleevskogo rasseianiia messbauérovskogo izlucheniia (RRMI). Dokl Akad Nauk SSSR. 1991;321(4):842–845. [PubMed] [Google Scholar]
- Tsuboi M., Nakanishi M. Overall and localized fluctuation in the structure of a protein molecule. Adv Biophys. 1979;12:101–130. [PubMed] [Google Scholar]
- Ulmer D. D., Kägi J. H. Hydrogen-deuterium exchange of cytochrome c. I. Effect of oxidation state. Biochemistry. 1968 Aug;7(8):2710–2717. doi: 10.1021/bi00848a003. [DOI] [PubMed] [Google Scholar]
- Woodward C. K., Hilton B. D. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys J. 1980 Oct;32(1):561–575. doi: 10.1016/S0006-3495(80)84990-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodward C., Simon I., Tüchsen E. Hydrogen exchange and the dynamic structure of proteins. Mol Cell Biochem. 1982 Oct 29;48(3):135–160. doi: 10.1007/BF00421225. [DOI] [PubMed] [Google Scholar]
- Yamato T., Higo J., Seno Y., Go N. Conformational deformation in deoxymyoglobin by hydrostatic pressure. Proteins. 1993 Aug;16(4):327–340. doi: 10.1002/prot.340160403. [DOI] [PubMed] [Google Scholar]
- Zenchenko T. A., Morozov V. N. Mechanical deformation enhances catalytic activity of crystalline carboxypeptidase A. Protein Sci. 1995 Feb;4(2):251–257. doi: 10.1002/pro.5560040211. [DOI] [PMC free article] [PubMed] [Google Scholar]