Abstract
Many biological supramolecular structures are formed by polymerization of macromolecular monomers. Light scattering techniques can provide structural information from such systems, if suitable procedures are used to collect the data and then to extract the relevant parameters. We present an experimental set-up in which a commercial multiangle laser light scattering photometer is linked to a stopped-flow mixer, allowing, in principle, the time-resolved extrapolation of the weight-average molecular weight M(w) and of the z-average square radius of gyration <R(g)(2)>(z) of the polymers from Zimm-like plots. However, if elongated structures are formed as the polymerization proceeds, curved plots rapidly arise, from which M(w) and <R(g)(2)>(z) cannot be recovered by linear fitting. To verify the correctness of a polynomial fitting procedure, polydisperse collections of rod-like or worm-like particles of different lengths, generated at various stages during bifunctional polycondensations of rod-like macromolecular monomers, were considered. Then, the angular dependence of their time-averaged scattered intensity was calculated in the Rayleigh-Gans-Debye approximation, with random and systematic noise also added to the data. For relatively narrow size distributions, a third-degree polynomial fitting gave satisfactory results across a broad range of conversion degrees, yielding M(w) and <R(g)(2)>(z) values within 2% and no greater than 10-20%, respectively, of the calculated values. When more broad size distributions were analyzed, the procedure still performed well for semiflexible polymers, but started to seriously underestimate both M(w) and <R(g)(2)>(z) when rigid rod-like particles were analyzed, even at relatively low conversion degrees. The data were also analyzed in the framework of the Casassa approximation, from which the mass per unit length of the polymers can be derived. These procedures were applied to a set of data taken on the early stages of the thrombin-catalyzed polymerization of fibrinogen, a rod-like macromolecule approximately 50 nm long. The polymers, grown in the absence of Ca(2+) by rate-limiting amounts of thrombin, appeared to be characterized by a much broader size distribution than the one expected for a classical Flory bifunctional polycondensation, and they seem to behave as relatively flexible worm-like double-stranded chains. Evidence for the formation of fibrinogen-fibrin monomer complexes is also inferred from the time dependence of the mass/length ratio. However, our data are also compatible with the presence of limited amounts of single-stranded structures in the very early stages, either as a secondary, less populated pathway, or as transient intermediates to the classical double-stranded fibrils.
Full Text
The Full Text of this article is available as a PDF (347.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bale M. D., Janmey P. A., Ferry J. D. Kinetics of formation of fibrin oligomers. II. Size distributions of ligated oligomers. Biopolymers. 1982 Nov;21(11):2265–2277. doi: 10.1002/bip.360211113. [DOI] [PubMed] [Google Scholar]
- Bauer R., Hansen S. L., Jones G., Suenson E., Thorsen S., Ogendal L. Fibrin structures during tissue-type plasminogen activator-mediated fibrinolysis studied by laser light scattering: relation to fibrin enhancement of plasminogen activation. Eur Biophys J. 1994;23(4):239–252. doi: 10.1007/BF00213574. [DOI] [PubMed] [Google Scholar]
- Blombäck B. Fibrinogen and fibrin--proteins with complex roles in hemostasis and thrombosis. Thromb Res. 1996 Jul 1;83(1):1–75. doi: 10.1016/0049-3848(96)00111-9. [DOI] [PubMed] [Google Scholar]
- Brass E. P., Forman W. B., Edwards R. V., Lindan O. Fibrin formation: the role of the fibrinogen-fibrin monomer complex. Thromb Haemost. 1976 Aug 31;36(1):37–48. [PubMed] [Google Scholar]
- Brosstad F., Kierulf P., Godal H. C. The fibrin-solubilizing effect of fibrinogen as studied by light scattering. Thromb Res. 1979;14(4-5):705–712. doi: 10.1016/0049-3848(79)90126-9. [DOI] [PubMed] [Google Scholar]
- Carr M. E., Jr, Shen L. L., Hermans J. Mass-length ratio of fibrin fibers from gel permeation and light scattering. Biopolymers. 1977 Jan;16(1):1–15. doi: 10.1002/bip.1977.360160102. [DOI] [PubMed] [Google Scholar]
- Di Stasio E., Nagaswami C., Weisel J. W., Di Cera E. Cl- regulates the structure of the fibrin clot. Biophys J. 1998 Oct;75(4):1973–1979. doi: 10.1016/S0006-3495(98)77638-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doolittle R. F. Fibrinogen and fibrin. Annu Rev Biochem. 1984;53:195–229. doi: 10.1146/annurev.bi.53.070184.001211. [DOI] [PubMed] [Google Scholar]
- Edwards F. B., Rombauer R. B., Campbell B. J. Thiol-disulfide interchange reactions between serum albumin and disulfides. Biochim Biophys Acta. 1969 Nov 11;194(1):234–245. doi: 10.1016/0005-2795(69)90199-8. [DOI] [PubMed] [Google Scholar]
- Everse S. J., Spraggon G., Veerapandian L., Riley M., Doolittle R. F. Crystal structure of fragment double-D from human fibrin with two different bound ligands. Biochemistry. 1998 Jun 16;37(24):8637–8642. doi: 10.1021/bi9804129. [DOI] [PubMed] [Google Scholar]
- Ferry J. D. The Mechanism of Polymerization of Fibrinogen. Proc Natl Acad Sci U S A. 1952 Jul;38(7):566–569. doi: 10.1073/pnas.38.7.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowler W. E., Hantgan R. R., Hermans J., Erickson H. P. Structure of the fibrin protofibril. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4872–4876. doi: 10.1073/pnas.78.8.4872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEIDUSCHEK E. P., HOLTZER A. Application of light scattering to biological systems: deoxyribonucleic acid and the muscle proteins. Adv Biol Med Phys. 1958;6:431–551. doi: 10.1016/b978-1-4832-3112-9.50014-1. [DOI] [PubMed] [Google Scholar]
- Gorkun O. V., Veklich Y. I., Medved L. V., Henschen A. H., Weisel J. W. Role of the alpha C domains of fibrin in clot formation. Biochemistry. 1994 Jun 7;33(22):6986–6997. doi: 10.1021/bi00188a031. [DOI] [PubMed] [Google Scholar]
- HALL C. E., SLAYTER H. S. The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol. 1959 Jan 25;5(1):11–16. doi: 10.1083/jcb.5.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hantgan R. R., Hermans J. Assembly of fibrin. A light scattering study. J Biol Chem. 1979 Nov 25;254(22):11272–11281. [PubMed] [Google Scholar]
- Janmey P. A., Bale M. D., Ferry J. D. Polymerization of fibrin: analysis of light-scattering data and relation to a peptide release. Biopolymers. 1983 Sep;22(9):2017–2019. doi: 10.1002/bip.360220902. [DOI] [PubMed] [Google Scholar]
- Janmey P. A., Erdile L., Bale M. D., Ferry J. D. Kinetics of fibrin oligomer formation observed by electron microscopy. Biochemistry. 1983 Aug 30;22(18):4336–4340. doi: 10.1021/bi00287a026. [DOI] [PubMed] [Google Scholar]
- Janmey P. A. Kinetics of formation of fibrin oligomers. I. Theory. Biopolymers. 1982 Nov;21(11):2253–2264. doi: 10.1002/bip.360211112. [DOI] [PubMed] [Google Scholar]
- Kehl M., Lottspeich F., Henschen A. Analysis of human fibrinopeptides by high-performance liquid chromatography. Hoppe Seylers Z Physiol Chem. 1981 Dec;362(12):1661–1664. [PubMed] [Google Scholar]
- Knoll D., Hantgan R., Williams J., McDonagh J., Hermans J. Characterization of soluble polymerized fibrin formed in the presence of excess fibrinogen fragment D. Biochemistry. 1984 Jul 31;23(16):3708–3715. doi: 10.1021/bi00311a021. [DOI] [PubMed] [Google Scholar]
- Koppert P. W., Huijsmans C. M., Nieuwenhuizen W. A monoclonal antibody, specific for human fibrinogen, fibrinopeptide A-containing fragments and not reacting with free fibrinopeptide A. Blood. 1985 Sep;66(3):503–507. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Li X., Galanakis D., Gabriel D. A. Transient intermediates in the thrombin activation of fibrinogen. Evidence for only the desAA species. J Biol Chem. 1996 May 17;271(20):11767–11771. doi: 10.1074/jbc.271.20.11767. [DOI] [PubMed] [Google Scholar]
- Martinelli R. A., Scheraga H. A. Steady-state kinetic study of the bovine thrombin-fibrinogen interaction. Biochemistry. 1980 May 27;19(11):2343–2350. doi: 10.1021/bi00552a010. [DOI] [PubMed] [Google Scholar]
- Marx G. Mechanism of fibrin coagulation based on selective, cation-driven, protofibril association. Biopolymers. 1988 May;27(5):763–774. doi: 10.1002/bip.360270505. [DOI] [PubMed] [Google Scholar]
- Medved' L. V., Gorkun O. V., Manyakov V. F., Belitser V. A. The role of fibrinogen alpha C-domains in the fibrin assembly process. FEBS Lett. 1985 Feb 11;181(1):109–112. doi: 10.1016/0014-5793(85)81123-6. [DOI] [PubMed] [Google Scholar]
- Medved' L., Ugarova T., Veklich Y., Lukinova N., Weisel J. Electron microscope investigation of the early stages of fibrin assembly. Twisted protofibrils and fibers. J Mol Biol. 1990 Dec 5;216(3):503–509. doi: 10.1016/0022-2836(90)90376-W. [DOI] [PubMed] [Google Scholar]
- Medved L. V., Gorkun O. V., Privalov P. L. Structural organization of C-terminal parts of fibrinogen A alpha-chains. FEBS Lett. 1983 Aug 22;160(1-2):291–295. doi: 10.1016/0014-5793(83)80985-5. [DOI] [PubMed] [Google Scholar]
- Mihalyi E. Physicochemical studies of bovine fibrinogen. IV. Ultraviolet absorption and its relation to the structure of the molecule. Biochemistry. 1968 Jan;7(1):208–223. doi: 10.1021/bi00841a026. [DOI] [PubMed] [Google Scholar]
- Mosesson M. W., DiOrio J. P., Siebenlist K. R., Wall J. S., Hainfeld J. F. Evidence for a second type of fibril branch point in fibrin polymer networks, the trimolecular junction. Blood. 1993 Sep 1;82(5):1517–1521. [PubMed] [Google Scholar]
- Mosesson M. W. Fibrin polymerization and its regulatory role in hemostasis. J Lab Clin Med. 1990 Jul;116(1):8–17. [PubMed] [Google Scholar]
- Mosesson M. W., Hainfeld J., Wall J., Haschemeyer R. H. Identification and mass analysis of human fibrinogen molecules and their domains by scanning transmission electron microscopy. J Mol Biol. 1981 Dec 15;153(3):695–718. doi: 10.1016/0022-2836(81)90414-9. [DOI] [PubMed] [Google Scholar]
- Mosesson M. W., Siebenlist K. R., DiOrio J. P., Matsuda M., Hainfeld J. F., Wall J. S. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (gamma 275 Arg-->Cys). J Clin Invest. 1995 Aug;96(2):1053–1058. doi: 10.1172/JCI118091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mueller M., Burchard W. Fibrinogen-fibrin transformations characterized during the course of reaction by their intermediate structures. A light scattering study in dilute solution under physiological conditions. Biochim Biophys Acta. 1978 Dec 20;537(2):208–225. doi: 10.1016/0005-2795(78)90505-6. [DOI] [PubMed] [Google Scholar]
- Nelb G. W., Kamykowski G. W., Ferry J. D. Kinetics of ligation of fibrin oligomers. J Biol Chem. 1980 Jul 10;255(13):6398–6402. [PubMed] [Google Scholar]
- Ryan E. A., Mockros L. F., Weisel J. W., Lorand L. Structural origins of fibrin clot rheology. Biophys J. 1999 Nov;77(5):2813–2826. doi: 10.1016/S0006-3495(99)77113-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHAINOFF J. R., PAGE I. H. Significance of cryoprofibrin in fibrinogen-fibrin conversion. J Exp Med. 1962 Nov 1;116:687–707. doi: 10.1084/jem.116.5.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spraggon G., Everse S. J., Doolittle R. F. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature. 1997 Oct 2;389(6650):455–462. doi: 10.1038/38947. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veklich Y. I., Gorkun O. V., Medved L. V., Nieuwenhuizen W., Weisel J. W. Carboxyl-terminal portions of the alpha chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated alpha C fragments on polymerization. J Biol Chem. 1993 Jun 25;268(18):13577–13585. [PubMed] [Google Scholar]
- Visser A., Payens T. A. On the kinetics of the thrombin-controlled polymerization of fibrin. FEBS Lett. 1982 Jun 1;142(1):35–38. doi: 10.1016/0014-5793(82)80213-5. [DOI] [PubMed] [Google Scholar]
- Weisel J. W. Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophys J. 1986 Dec;50(6):1079–1093. doi: 10.1016/S0006-3495(86)83552-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisel J. W., Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J. 1992 Jul;63(1):111–128. doi: 10.1016/S0006-3495(92)81594-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisel J. W., Stauffacher C. V., Bullitt E., Cohen C. A model for fibrinogen: domains and sequence. Science. 1985 Dec 20;230(4732):1388–1391. doi: 10.1126/science.4071058. [DOI] [PubMed] [Google Scholar]
- Weisel J. W., Veklich Y., Gorkun O. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. J Mol Biol. 1993 Jul 5;232(1):285–297. doi: 10.1006/jmbi.1993.1382. [DOI] [PubMed] [Google Scholar]
- Wiltzius P., Dietler G., Känzig W., Hofmann V., Häberli A., Straub P. W. Fibrin aggregation before sol-gel transition. Biophys J. 1982 May;38(2):123–132. doi: 10.1016/S0006-3495(82)84539-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiltzius P., Dietler G., Känzig W., Häberli A., Straub P. W. Fibrin polymerization studied by static and dynamic light-scattering as a function of fibrinopeptide A release. Biopolymers. 1982 Nov;21(11):2205–2223. doi: 10.1002/bip.360211109. [DOI] [PubMed] [Google Scholar]
- Yamakawa H., Fujii M. Light scattering from wormlike chains. Determination of the shift factor. Macromolecules. 1974 Sep-Oct;7(5):649–654. doi: 10.1021/ma60041a020. [DOI] [PubMed] [Google Scholar]
