Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):601–613. doi: 10.1016/S0006-3495(00)76319-3

A theoretical model for the prediction of sequence-dependent nucleosome thermodynamic stability.

C Anselmi 1, G Bocchinfuso 1, P De Santis 1, M Savino 1, A Scipioni 1
PMCID: PMC1300961  PMID: 10919995

Abstract

A theoretical model for predicting nucleosome thermodynamic stability in terms of DNA sequence is advanced. The model is based on a statistical mechanical approach, which allows the calculation of the canonical ensemble free energy involved in the competitive nucleosome reconstitution. It is based on the hypothesis that nucleosome stability mainly depends on the bending and twisting elastic energy to transform the DNA intrinsic superstructure into the nucleosomal structure. The ensemble average free energy is calculated starting from the intrinsic curvature, obtained by integrating the dinucleotide step deviations from the canonical B-DNA and expressed in terms of a Fourier series, in the framework of first-order elasticity. The sequence-dependent DNA flexibility is evaluated from the differential double helix thermodynamic stability. A large number of free-energy experimental data, obtained in different laboratories by competitive nucleosome reconstitution assays, are successfully compared to the theoretical results. They support the hypothesis that the stacking energies are the major factor in DNA rigidity and could be a measure of DNA stiffness. A dual role of DNA intrinsic curvature and flexibility emerges in the determination of nucleosome stability. The difference between the experimental and theoretical (elastic) nucleosome-reconstitution free energy for the whole pool of investigated DNAs suggests a significant role for the curvature-dependent DNA hydration and counterion interactions, which appear to destabilize nucleosomes in highly curved DNAs. This model represents an attempt to clarify the main features of the nucleosome thermodynamic stability in terms of physical-chemical parameters and suggests that in molecular systems with a large degree of complexity, the average molecular properties dominate over the local features, as in a statistical ensemble.

Full Text

The Full Text of this article is available as a PDF (204.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anselmi C., Bocchinfuso G., De Santis P., Savino M., Scipioni A. Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. J Mol Biol. 1999 Mar 12;286(5):1293–1301. doi: 10.1006/jmbi.1998.2575. [DOI] [PubMed] [Google Scholar]
  2. Bacolla A., Gellibolian R., Shimizu M., Amirhaeri S., Kang S., Ohshima K., Larson J. E., Harvey S. C., Stollar B. D., Wells R. D. Flexible DNA: genetically unstable CTG.CAG and CGG.CCG from human hereditary neuromuscular disease genes. J Biol Chem. 1997 Jul 4;272(27):16783–16792. doi: 10.1074/jbc.272.27.16783. [DOI] [PubMed] [Google Scholar]
  3. Berman H. M. Crystal studies of B-DNA: the answers and the questions. Biopolymers. 1997;44(1):23–44. doi: 10.1002/(SICI)1097-0282(1997)44:1<23::AID-BIP3>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  4. Blank T. A., Becker P. B. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J Mol Biol. 1996 Jul 5;260(1):1–8. doi: 10.1006/jmbi.1996.0377. [DOI] [PubMed] [Google Scholar]
  5. Bolshoy A., McNamara P., Harrington R. E., Trifonov E. N. Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2312–2316. doi: 10.1073/pnas.88.6.2312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bordin F., Cacchione S., Savino M., Tufillaro A. Different interactions of spermine with a "curved" and a "normal" DNA duplex: (CA4T4G)n and (CT4A4G)n. Gel electrophoresis and circular dichroism studies. Biochem Int. 1992 Aug;27(5):891–901. [PubMed] [Google Scholar]
  7. Cacchione S., Cerone M. A., Savino M. In vitro low propensity to form nucleosomes of four telomeric sequences. FEBS Lett. 1997 Jan 2;400(1):37–41. doi: 10.1016/s0014-5793(96)01318-x. [DOI] [PubMed] [Google Scholar]
  8. Cao H., Widlund H. R., Simonsson T., Kubista M. TGGA repeats impair nucleosome formation. J Mol Biol. 1998 Aug 14;281(2):253–260. doi: 10.1006/jmbi.1998.1925. [DOI] [PubMed] [Google Scholar]
  9. Chastain P. D., 2nd, Eichler E. E., Kang S., Nelson D. L., Levene S. D., Sinden R. R. Anomalous rapid electrophoretic mobility of DNA containing triplet repeats associated with human disease genes. Biochemistry. 1995 Dec 12;34(49):16125–16131. doi: 10.1021/bi00049a027. [DOI] [PubMed] [Google Scholar]
  10. Crick F. H. Linking numbers and nucleosomes. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2639–2643. doi: 10.1073/pnas.73.8.2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crothers D. M. DNA curvature and deformation in protein-DNA complexes: a step in the right direction. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15163–15165. doi: 10.1073/pnas.95.26.15163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De Santis P., Fuà M., Palleschi A., Savino M. Influence of dynamic fluctuations on DNA curvature. Biophys Chem. 1995 Aug;55(3):261–271. doi: 10.1016/0301-4622(95)00034-u. [DOI] [PubMed] [Google Scholar]
  13. De Santis P., Palleschi A., Savino M., Scipioni A. A theoretical model of DNA curvature. Biophys Chem. 1988 Dec;32(2-3):305–317. doi: 10.1016/0301-4622(88)87016-9. [DOI] [PubMed] [Google Scholar]
  14. De Santis P., Palleschi A., Savino M., Scipioni A. Validity of the nearest-neighbor approximation in the evaluation of the electrophoretic manifestations of DNA curvature. Biochemistry. 1990 Oct 2;29(39):9269–9273. doi: 10.1021/bi00491a023. [DOI] [PubMed] [Google Scholar]
  15. DeSantis P., Palleschi A., Savino M., Scipioni A. Theoretical prediction of the gel electrophoretic retardation changes due to point mutations in a tract of SV40 DNA. Biophys Chem. 1992 Feb;42(2):147–152. doi: 10.1016/0301-4622(92)85004-n. [DOI] [PubMed] [Google Scholar]
  16. Del Cornò M., De Santis P., Sampaolese B., Savino M. DNA superstructural features and nucleosomal organization of the two centromeres of Kluyveromyces lactis chromosome 1 and Saccharomyces cerevisiae chromosome 6. FEBS Lett. 1998 Jul 10;431(1):66–70. doi: 10.1016/s0014-5793(98)00702-9. [DOI] [PubMed] [Google Scholar]
  17. DiGabriele A. D., Sanderson M. R., Steitz T. A. Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1816–1820. doi: 10.1073/pnas.86.6.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Drew H. R., Dickerson R. E. Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol. 1981 Sep 25;151(3):535–556. doi: 10.1016/0022-2836(81)90009-7. [DOI] [PubMed] [Google Scholar]
  19. Drew H. R., Travers A. A. DNA bending and its relation to nucleosome positioning. J Mol Biol. 1985 Dec 20;186(4):773–790. doi: 10.1016/0022-2836(85)90396-1. [DOI] [PubMed] [Google Scholar]
  20. Fack F., Sarantoglou V. Curved DNA fragments display retarded elution upon anion exchange HPLC. Nucleic Acids Res. 1991 Aug 11;19(15):4181–4188. doi: 10.1093/nar/19.15.4181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Flaus A., Luger K., Tan S., Richmond T. J. Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1370–1375. doi: 10.1073/pnas.93.4.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fuller F. B. The writhing number of a space curve. Proc Natl Acad Sci U S A. 1971 Apr;68(4):815–819. doi: 10.1073/pnas.68.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Godde J. S., Kass S. U., Hirst M. C., Wolffe A. P. Nucleosome assembly on methylated CGG triplet repeats in the fragile X mental retardation gene 1 promoter. J Biol Chem. 1996 Oct 4;271(40):24325–24328. doi: 10.1074/jbc.271.40.24325. [DOI] [PubMed] [Google Scholar]
  24. Godde J. S., Wolffe A. P. Nucleosome assembly on CTG triplet repeats. J Biol Chem. 1996 Jun 21;271(25):15222–15229. doi: 10.1074/jbc.271.25.15222. [DOI] [PubMed] [Google Scholar]
  25. Gorin A. A., Zhurkin V. B., Olson W. K. B-DNA twisting correlates with base-pair morphology. J Mol Biol. 1995 Mar 17;247(1):34–48. doi: 10.1006/jmbi.1994.0120. [DOI] [PubMed] [Google Scholar]
  26. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  27. Hud N. V., Sklenár V., Feigon J. Localization of ammonium ions in the minor groove of DNA duplexes in solution and the origin of DNA A-tract bending. J Mol Biol. 1999 Feb 26;286(3):651–660. doi: 10.1006/jmbi.1998.2513. [DOI] [PubMed] [Google Scholar]
  28. Klug A., Rhodes D., Smith J., Finch J. T., Thomas J. O. A low resolution structure for the histone core of the nucleosome. Nature. 1980 Oct 9;287(5782):509–516. doi: 10.1038/287509a0. [DOI] [PubMed] [Google Scholar]
  29. Kornberg R. D. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
  30. Liepinsh E., Otting G., Wüthrich K. NMR observation of individual molecules of hydration water bound to DNA duplexes: direct evidence for a spine of hydration water present in aqueous solution. Nucleic Acids Res. 1992 Dec 25;20(24):6549–6553. doi: 10.1093/nar/20.24.6549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lowary P. T., Widom J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol. 1998 Feb 13;276(1):19–42. doi: 10.1006/jmbi.1997.1494. [DOI] [PubMed] [Google Scholar]
  32. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  33. McFail-Isom L., Sines C. C., Williams L. D. DNA structure: cations in charge? Curr Opin Struct Biol. 1999 Jun;9(3):298–304. doi: 10.1016/S0959-440X(99)80040-2. [DOI] [PubMed] [Google Scholar]
  34. McGhee J. D., Felsenfeld G. Nucleosome structure. Annu Rev Biochem. 1980;49:1115–1156. doi: 10.1146/annurev.bi.49.070180.005343. [DOI] [PubMed] [Google Scholar]
  35. Olson W. K., Gorin A. A., Lu X. J., Hock L. M., Zhurkin V. B. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11163–11168. doi: 10.1073/pnas.95.19.11163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Olson W. K., Marky N. L., Jernigan R. L., Zhurkin V. B. Influence of fluctuations on DNA curvature. A comparison of flexible and static wedge models of intrinsically bent DNA. J Mol Biol. 1993 Jul 20;232(2):530–554. doi: 10.1006/jmbi.1993.1409. [DOI] [PubMed] [Google Scholar]
  37. Richmond T. J., Finch J. T., Rushton B., Rhodes D., Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  38. Rossetti L., Cacchione S., Fuà M., Savino M. Nucleosome assembly on telomeric sequences. Biochemistry. 1998 May 12;37(19):6727–6737. doi: 10.1021/bi9726180. [DOI] [PubMed] [Google Scholar]
  39. SantaLucia J., Jr A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460–1465. doi: 10.1073/pnas.95.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Satchwell S. C., Drew H. R., Travers A. A. Sequence periodicities in chicken nucleosome core DNA. J Mol Biol. 1986 Oct 20;191(4):659–675. doi: 10.1016/0022-2836(86)90452-3. [DOI] [PubMed] [Google Scholar]
  41. Schellman J. A., Harvey S. C. Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophys Chem. 1995 Jun-Jul;55(1-2):95–114. doi: 10.1016/0301-4622(94)00144-9. [DOI] [PubMed] [Google Scholar]
  42. Shrader T. E., Crothers D. M. Artificial nucleosome positioning sequences. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7418–7422. doi: 10.1073/pnas.86.19.7418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shrader T. E., Crothers D. M. Effects of DNA sequence and histone-histone interactions on nucleosome placement. J Mol Biol. 1990 Nov 5;216(1):69–84. doi: 10.1016/S0022-2836(05)80061-0. [DOI] [PubMed] [Google Scholar]
  44. Shui X., McFail-Isom L., Hu G. G., Williams L. D. The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry. 1998 Jun 9;37(23):8341–8355. doi: 10.1021/bi973073c. [DOI] [PubMed] [Google Scholar]
  45. Shui X., Sines C. C., McFail-Isom L., VanDerveer D., Williams L. D. Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry. 1998 Dec 1;37(48):16877–16887. doi: 10.1021/bi982063o. [DOI] [PubMed] [Google Scholar]
  46. Sprous D., Zacharias W., Wood Z. A., Harvey S. C. Dehydrating agents sharply reduce curvature in DNAs containing A tracts. Nucleic Acids Res. 1995 May 25;23(10):1816–1821. doi: 10.1093/nar/23.10.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sugimoto N., Nakano S., Yoneyama M., Honda K. Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res. 1996 Nov 15;24(22):4501–4505. doi: 10.1093/nar/24.22.4501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Travers A., Klug A. Nucleoprotein complexes. DNA wrapping and writhing. 1987 May 28-Jun 3Nature. 327(6120):280–281. doi: 10.1038/327280a0. [DOI] [PubMed] [Google Scholar]
  49. Wang Y. H., Gellibolian R., Shimizu M., Wells R. D., Griffith J. Long CCG triplet repeat blocks exclude nucleosomes: a possible mechanism for the nature of fragile sites in chromosomes. J Mol Biol. 1996 Nov 8;263(4):511–516. doi: 10.1006/jmbi.1996.0593. [DOI] [PubMed] [Google Scholar]
  50. Wang Y. H., Griffith J. D. The [(G/C)3NN]n motif: a common DNA repeat that excludes nucleosomes. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8863–8867. doi: 10.1073/pnas.93.17.8863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Widlund H. R., Cao H., Simonsson S., Magnusson E., Simonsson T., Nielsen P. E., Kahn J. D., Crothers D. M., Kubista M. Identification and characterization of genomic nucleosome-positioning sequences. J Mol Biol. 1997 Apr 11;267(4):807–817. doi: 10.1006/jmbi.1997.0916. [DOI] [PubMed] [Google Scholar]
  52. Widom J. Toward a unified model of chromatin folding. Annu Rev Biophys Biophys Chem. 1989;18:365–395. doi: 10.1146/annurev.bb.18.060189.002053. [DOI] [PubMed] [Google Scholar]
  53. Woda J., Schneider B., Patel K., Mistry K., Berman H. M. An analysis of the relationship between hydration and protein-DNA interactions. Biophys J. 1998 Nov;75(5):2170–2177. doi: 10.1016/S0006-3495(98)77660-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES